Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T07:50:26.275Z Has data issue: false hasContentIssue false

Electron Microscopy Study of Structural Changes During Isothermal Annealing of a Ni4Mo-Based Alloy Containing Chromium

Published online by Cambridge University Press:  25 February 2011

K. Vasudevan
Affiliation:
Dept. of Metallurgy, University of Illinois, Urbana, IL 61801
E. E. Stansbury
Affiliation:
Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996-2200
Get access

Abstract

Transmission electron microscopy has been used to study phase transformations in a Ni4Mo alloy containing 2.08 wt pct chromium following isothermal annealing at 850, 800 and 700°C. At these temperatgres, the DO22 phase forms initially, which then transforms to Ni3Mo. At 700°C, the DO22 phase forms from bands composed of Ni4Mo and Ni2Mo aligned parallel to {111} fcc planes, and is relatively stable. A second mechanism for the formation of Ni3Mo occurs at 700°C. Large Ni4Mo domains form at grain boundaries. These su~sequently transform to Ni3Mo, with the simultaneous presence of stacking faults on (010) Ni3Mo planes.

These observations are correlated to the optical microstructure. Grain size influences the type, volume, and distribution of second phases. Sequences and mechanisms of transformations are related to the experimental observations.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vasudevan, K. and Stansbury, E. E., Scripta Met. 19, 1101 (1985).CrossRefGoogle Scholar
2. Stansbury, E. E., Vasudevan, K. and Lei, T. S., Microstructural Science, Shiels, S. A. et al. (eds.), Elsevier, Ohio 13, 197 (1985).Google Scholar
3. Vasudevan, K., Ph.d. Dissertation, Univ. of Tennessee, Knoxville (1986).Google Scholar
4. Yamamoto, M., Nenno, S., Saburi, T. and Mizutani, Y., Trans. Japan Inst. Metals 11, 120 (1970).CrossRefGoogle Scholar
5. Lei, T. S., Ph.D. Dissertation, Univ. of Tennessee, Knoxville (1979).Google Scholar
6. Stansbury, E. E., High Temperature Ordered Intermetallic Compounds, Koch, C. C. et al. (eds.), Materials Research Society, Pittsburg 39, 93 (1985).Google Scholar
7. Ruedl, E., Delavignette, P. and Amelinckx, S., Phys. Stat. Sol. 28, 305 (1968).CrossRefGoogle Scholar
8. Gevers, R., Van Landuyt, J. and Amelinckx, S., Phys. Stat. Sol. 26, 577 (1968).CrossRefGoogle Scholar
9. Van Tendeloo, G., Van Landuyt, J., Delavignette, P. and Amelinckx, S., Phys. Stat. Sol. (a) 25, 697 (1974).CrossRefGoogle Scholar
10. Van Tendeloo, G., Delavignette, P., Van Landuyt, J. and Amelinckx, S., Phys. Stat. Sol. (a) 26, 299 (1974).CrossRefGoogle Scholar
11. Van Tendeloo, G., De Ridder, R. and Amelinckx, S., Phys. Stat. Sol. (a) 27, 457 (1975).CrossRefGoogle Scholar
12. Van Tendeloo, G., Mater. Sci. Eng., 26, 209 (1976).CrossRefGoogle Scholar
13. Schryvers, D., Van Tendeloo, G. and Amelinckx, S., Phys. Stat. Sol. (a) 87, 401 (1985).CrossRefGoogle Scholar
14. Ruedl, E., Mat. Res. Bull. 10, 1267 (1975).CrossRefGoogle Scholar
15. Okamoto, P. R. and Thomas, G., Acta Met. 19, 825 (1971).CrossRefGoogle Scholar
16. Das, S. K. and Thomas, G., Phys. Stat. Sol. (a) 21, 177 (1974).CrossRefGoogle Scholar
17. Yamamoto, M., Shohno, F. and Nenno, S., Trans. Japan Inst. Metals 19, 475 (1978).CrossRefGoogle Scholar
18. Martin, P. L. and Williams, J. C., Acta Met. 32, 1681 (1984).CrossRefGoogle Scholar
19. Martin, P. L. and Williams, J. C., Acta Met. 32, 1695 (1984).CrossRefGoogle Scholar
20. De Fontaine, D., Acta Met. 23, 553 (1975).CrossRefGoogle Scholar
21. Sanchez, J. M. and de Fontaine, D., Phys. Rev. B 25, 1759 (1982).CrossRefGoogle Scholar