Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T12:41:58.891Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of Self-Assembled, Ordered Gold Nanocrystal/Silica Thin Films Prepared by Sol-Gel Processing

Published online by Cambridge University Press:  01 February 2011

Kai Yang
Affiliation:
Center for High Technology Materials
Hongyou Fan
Affiliation:
Department of Chemical and Nuclear Engineering, the University of New Mexico, Albuquerque, NM 87106 Ceramic Processing and Inorganic Materials Dept.
Michael J. O'Brien
Affiliation:
Center for High Technology Materials
Sima La Fontaine
Affiliation:
Center for High Technology Materials
Gabriel P. Lopez
Affiliation:
Department of Chemical and Nuclear Engineering, the University of New Mexico, Albuquerque, NM 87106
Kevin J. Malloy
Affiliation:
Center for High Technology Materials
C. Jeffrey Brinker
Affiliation:
Department of Chemical and Nuclear Engineering, the University of New Mexico, Albuquerque, NM 87106 Self-Assembled Materials Dept., Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM 87106
Thomas W. Sigmon
Affiliation:
Center for High Technology Materials
Get access

Abstract

Highly ordered gold NC/silica films are synthesized by self-assembly of water-soluble gold nanocrystal micelles and soluble silica using a sol-gel spin-coating technique. The optical properties are analyzed using ellipsometry and ultraviolet-visible spectroscopy. The absorption spectra show a strong surface plasmon absorption band at ∼520 nm for all samples. Angular excitation spectra of the surface plasmon show a steep dip in the reflectivity curve at ∼65°. Charge transport behavior of the films is examined using metal-oxide-semiconductor (MOS) structures.MOS capacitor samples exhibit charge storage with discharge behavior dominated by electron transport within the gold NC arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brinker, C.J., MRS Bulletin, September, 631 (2004)Google Scholar
2 Andres, R. P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J., and Osifchin, R.G., Science, 273, 1690 (1996)Google Scholar
3 Black, C.T., Murray, C.B., Sandstrom, R.L., Sun, S.H., Science, 290, 1131 (2000)Google Scholar
4 Bezryadin, A., Westervelt, R.M., and Tinkham, M., Appl. Phys. Lett., 74, 2699 (1999)Google Scholar
5 Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E.F., and Chan, K., Appl. Phys. Lett, 68, 1377 (1996)Google Scholar
6 Liu, Z., Lee, C., Narayanan, V., Pei, G., Kan, E.C., IEEE Trans. Electron Dev., 49, 1606 (2002)Google Scholar
7 Fan, H.Y., Yang, K., Boye, D.M., Sigmon, T.W., Malloy, K.J., Xu, H., Lopez, G.P., and Brinker, C.J., Science, 304, 567 (2004)Google Scholar
8 Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., Nature, 382, 607 (1996)Google Scholar
9 Barnes, W.L., Dereux, A., and Ebbesen, T.W., Nature, 424, 824 (2003)Google Scholar
10 Debrus, S., Lafait, J., May, M., Pincon, N., Prot, D., Sella, C., and Venturini, J., J. Appl. Phys., 88 (8), 4469 (2000)Google Scholar
11 Qu, S., Li, H., Peng, T., Gao, Y., Qiu, J., Zhu, C., Materials Letters, 58, 1427 (2004)Google Scholar
12 O'Brien, M.J., Perez-Luna, V.H., Brueck, S.R.J., and Lopez, G.P., Biosensors & Bioelectronics, 16(1-2), 97 (2001)Google Scholar
13 Ancona, M.G., Kruppa, W., Rendell, R.W., Snow, A.W., Park, D., and Boos, J.B., Phys. Rev. B. 64, 33408 (2001)Google Scholar
14 Grabert, H. and Devoret, M.H., Single Charge Tunneling, (Plenum, New York, 1992)Google Scholar