No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
Thin SiC layers were synthesized by high dose C implantation into silicon using a metal vapor vacuum arc ion source at various conditions. Characterization of the ion beam synthesized SiC layers was performed using various techniques including x-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) absorption, and Raman spectroscopy. The XPS results showed that for samples with over-stoichiometric implant doses, if the implant beam current density was not high enough, even after prolonged thermal annealing at high temperatures, the as-implanted gaussian-like carbon depth profile remained unchanged. However, if the implant beam current density was sufficiently high, there was significant carbon redistribution during annealing, so that a thicker stoichiometric SiC layer can be formed after annealing. The XPS and Raman results also showed that there were carbon clusters formed in the as-implanted layers for the low beam current density implanted samples, while the formation of such carbon clusters was minimal in the high beam current density as-implanted samples. The effect of beam current density on the fraction of different bonding states of the implanted carbon atoms was studied.