Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:40:00.180Z Has data issue: false hasContentIssue false

Dynamics of Air-Water Contact Lines and Interfaces Near the Pinning Threshold

Published online by Cambridge University Press:  10 February 2011

Po-Zen Wong
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003
Erik Schäffer
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003
David B. Pengra
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003
Get access

Abstract

We report a study of the dynamics of capillary rise of water in glass tubes and glass bead packs. The water column height h is measured as a function of time t byvideo imaging. Analyzing the late time data in terms of critical pinning, dh/dt ∞ (PPc)β, we find an anomalously large exponent β for interfaces in bead packs and β ≈ 1 for contact lines in capillary tubes. Repetitive rise and fall experiments in capillary tubes suggests that thinning of the wetting film plays an important role in the dynamics. We discuss these findings in light of recent theories and experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Urbach, J. S., Madison, R. C., and Markert, J. T., Phys. Rev. Lett. 75, 276 (1995).Google Scholar
2. Bhattacharya, S. and Higgins, M. J., Phys. Rev. Lett. 70, 2617 (1993).Google Scholar
3. Nattermann, T. et al., J. Physique II 2, 1483 (1992).Google Scholar
4. Narayan, O. and Fisher, D. S., Phys. Rev. B 48, 7030 (1993).Google Scholar
5. Delker, T., Pengra, D. B., and Wong, P.-z., Phys. Rev. Lett. 76, 2902 (1996).Google Scholar
6. Wong, P.-z., Delker, T., Hott, M., and Pengra, D. B., in Disordered Materials and Interfaces, MRS Symp. Proc. 407, Cummins, H. Z., Durian, D. J., Johnson, D. L. and Stanley, H. E., eds., pp. 2732 (MRS, Pittsburgh, 1996).Google Scholar
7. Koplik, J. and Levine, H., Phys. Rev. B 32, 280 (1985).Google Scholar
8. Stokes, J. P., Kushnick, A. P., and Robbins, M. O., Phys. Rev. Lett. 60, 1386 (1988).Google Scholar
9. Wong, P.-z. and Cable, J. W., Phys. Rev. B 28, 5361 (1983).Google Scholar
10. Bruinsma, R. and Aeppli, G., Phys. Rev. Lett. 52, 1547 (1984).Google Scholar
11. Grinstein, G. and Ma, S.-k., Phys. Rev. B 28, 2588 (1983).Google Scholar
12. He, S., Kahanda, G. L. M. K. S., and Wong, P.-z., Phys. Rev. Lett. 69, 3731 (1992).Google Scholar
13. See, e.g., Wong, P.-z., MRS Bull. 19, No. 5, 32 (1994), and REFERENCES therein.Google Scholar
14. See, e.g., Ertaş, D. and Kardar, M., Phys. Rev. E 49, R2532 (1994).Google Scholar
15. Raphaël, E. and de Gennes, P. G., J. Chem. Phys. 90, 7577 (1989).Google Scholar
16. Joanny, J. F. and Robbins, M. O., J. Chem. Phys. 92, 3206 (1990).Google Scholar
17. Sheng, P. and Zhou, M., Phys. Rev. A 45, 5694 (1992).Google Scholar
18. Stokes, J. P. et al., Phys. Rev. Lett. 65, 1885 (1990).Google Scholar
19. Kumar, S., Reich, D. H., and Robbins, M. O., Phys. Rev. E 52, R5776 (1995).Google Scholar
20. Ström, G., Fredriksson, M., Stenius, P., and Rodoev, B., J. Colloid Interface Sci. 134, 107 (1990).Google Scholar
21. Mumley, T. E., Radke, C. J., and Williams, M. C., J. Colloid Interface Sci. 109, 398 (1986).Google Scholar
22. Durian, D. J., Abeysuriya, K., Watson, S. K., and Franck, C., Phys. Rev. A 42, 4724 (1990).Google Scholar
23. Delker, T., Senior Honors Thesis, University of Massachusetts at Amherst (1995).Google Scholar
24. Washburn, E. W., Phys. Rev. 17, 273 (1921).Google Scholar
25. Hohenberg, P. C. and Halperin, B. I., Rev. Mod. Phys. 49, 435 (1977).Google Scholar