Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T16:47:59.734Z Has data issue: false hasContentIssue false

Direct Focused Ion Beam Drilling of Nanopores

Published online by Cambridge University Press:  26 February 2011

Nick Patterson
Affiliation:
[email protected] National LaboratoriesAlbuquerque NM 87185United States
V. Carter Hodges
Affiliation:
[email protected], Sandia National Laboratories, Albuquerque, NM, 87185, United States
Michael J. Vasile
Affiliation:
[email protected], Sandia National Laboratories, Albuquerque, NM, 87185, United States
David P. Adams
Affiliation:
[email protected], Sandia National Laboratories, Albuquerque, NM, 87185, United States
Zhu Chen
Affiliation:
[email protected], University of New Mexico, Albuquerque, NM, 87106, United States
C. Jeff Brinker
Affiliation:
[email protected], Sandia National Laboratories, Albuquerque, NM, 87185, United States
Get access

Abstract

Focused 30keV gallium ion beam, single-pixel drilling combined with backside particle detection is used to fabricate pores having exit diameters as small as ~11 nm in 200 nm-thick silicon nitride membranes. The backside channelplate detector response obtained about the onset of breakthrough is interpreted by plan-view transmission electron microscopy investigations of hole morphology. Immediately prior to breakthrough, there is a rise in detector signal as the local membrane thickness is reduced. This likely occurs as a result of ion transmission and, possibly, forward sputtering. At the dose required for breakthrough a maximum detector signal is obtained thus providing a potential method for end point detection. The focused ion drilling technique avoids broad area beam exposure methods that are often used to reduce hole diameter to nanometer dimension. In addition, the current approach overcomes difficulties in determining a required dose for breakthrough such as those that arise from an inhomogeneous membrane thickness, redeposition, or ion channeling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M.J., and Golovchenko, J.A., Nature, 412, 166 (2001).Google Scholar
2. Li, J., Gershow, M., Stein, D., Brandin, E. and Golovchenko, J.A., Nat. Mater. 2, 611 (2003).Google Scholar
3. Fologea, D., Gershow, M., Ledden, B., McNabb, D.S., Golovchenko, J.A. and Li, J., Nanoletters 5, 1905 (2005).Google Scholar
4. Chen, Z., Adams, D.P., Vasile, M.J., Liu, Nanguo, Jiang, Y., Xomeritakes, G., and Brinker, C.J., Mat. Res. Soc. Symp. Proc. 921E (Warrendale, PA, 2006), 0921-TO5-29.Google Scholar
5. Henriquez, R.R., Ito, T., Sun, L. and Crooks, R.M., Analyst, 129, 478 (2004).Google Scholar
6. Lehrer, C., Frey, L., Petersen, S., Sulzbach, Th., Ohlsson, O., Dziomba, Th., Danzebrink, H.U., and Ryssel, H., Microelect. Engin. 57–58, 721 (2001).Google Scholar
7. Schenkel, T., Radmilovic, V., Stach, E.A., Park, S.-J., Persaud, A., J.Va.Sci.Tech.B 21, 2720 (2003).Google Scholar
8. Veerman, J.A., Otter, A.M., Kuipers, L., and van Hulst, N.F., Appl. Phys. Lett. 72, 3115 (1998).Google Scholar
9. Siwy, Z. and Fuliski, A., Phys. Rev. Lett. 89, 198103 (2002).Google Scholar
10. Mochel, M.E., Eades, J.A., Metzger, M., Meyer, J.I., and Mochel, J.M., Appl. Phys. Lett. 44, 502 (1984).Google Scholar
11. Stein, D.M., McMullan, C.J., Li, J., and Golovchenko, J.A., Rev. Sci. Instrum. 75, 900 (2004).Google Scholar
12. Mitsui, T., Stein, D., Kim, Y.-R., Hoogerheide, D. and Golovchenko, J.A., Phys. Rev. Lett. 96, 036102–1 (2006).Google Scholar
13. Biance, A.-L., Gierak, J., Bourhis, É., Madouri, A., Lafosse, X., Patriarche, G., Oukhaled, G., Ulysse, C., Galas, J.-C., Chen, Y. and Auvray, L., Microelect. Engin. 83, 1474 (2006).Google Scholar
14. Lo, C.J., Aref, T. and Bezryadin, A., Nanotech. 17, 3264 (2006).Google Scholar
15. Nilsson, J., Lee, J.R.I., Ratto, T.V. and Létant, S.E., Adv. Mater. 18, 427 (2006).Google Scholar
16. Chen, P., Mitsui, T., Farmer, D.B., Golovchenko, J., Gordon, R.G. and Branton, D., Nanoletters, 4, 1333 (2004).Google Scholar
17. Stein, D., Li, J., and Golovchenko, J.A., Phys. Rev. Lett. 89, 276106–1 (2002).Google Scholar
18. A single point is created (in registry) by drawing a 0.02-μm long line and commanding a - 10000 % overlap.Google Scholar
19. Rate is determined in separate experiments by milling low aspect ratio 30 × 30 ?mu;m features.Google Scholar
20. Adams, D.P., Vasile, M.J. and Mayer, T.M., J. Vac. Sci. Technol. B 24, 1766 (2006).Google Scholar