Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T01:10:11.411Z Has data issue: false hasContentIssue false

Dependency of Nonvolatile Memory Behavior on Curing Temperature for Au Nanocrystals Embedded in PVK

Published online by Cambridge University Press:  26 February 2011

Beyong-il Han
Affiliation:
[email protected], Hanyang University, Electrical & Computer Engineering, #101 HIT, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea, Republic of
Chang-Kyu Lee
Affiliation:
[email protected], Hanyang University, Electrical & Computer Engineering, #101 HIT, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea, Republic of
Jong-Sung Kwon
Affiliation:
[email protected], Hanyang University, Electrical & Computer Engineering, #101 HIT, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea, Republic of
In-Chul Na
Affiliation:
[email protected], Hanyang University, Electrical & Computer Engineering, #101 HIT, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea, Republic of
Jea-gun Park
Affiliation:
[email protected], Hanyang University, Electrical & Computer Engineering, #101 HIT, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 133-791, Korea, Republic of
Young-Min Kim
Affiliation:
[email protected], Korea Basic Science Institute, Electron Microscopy Team, 52 Eoeun-dong, Yusung-gu, Daajeon, 305-333, Korea, Republic of
Get access

Abstract

A bistable effects of Au nano-crystals embedded in poly(N-vinylcarbazole) (PVK) were observed. Subsequently we investigated dependency of the nonvolatile memory behavior on curing temperature for the Au nano-crystals embedded in the PVK. For the study, in the devices of different curing temperatures we measured current-voltage characteristics for the devices and investigated the formation of the Au nano-crystals using cross sectional transmission electron microscopy (TEM). The nonvolatile memory behavior depends on the curing temperature, which is attributed to the suitable formation of the Au nano-crystal.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W. and Slyke, S. A. Van, Appl. Phys. Lett. 51, 913 (1987).Google Scholar
2. Burroughs, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Bums, P. L., and Holmes, A. B., Nature (London) 347, 539 (1990).Google Scholar
3. Garnier, F., Hajlaoui, R., Yassar, A., and Srivastava, P., Science 265, 1684 (1994).Google Scholar
4. Tessler, N., Denton, G. J., and Friend, R. H., Nature (London) 382, 695 (1996).Google Scholar
5. Ma, L. P., Liu, J., Pyo, S., and Yang, Y., Appl. Phys. Lett. 80, 362 (2002).Google Scholar
6. Ma, L. P., Liu, J., and Yang, Y., Appl. Phys. Lett. 80, 2997 (2002)Google Scholar
7. Ma, L. P., Pyo, S. M., Ouyang, J., Xu, Q. F., and Yang, Y., Appl. Phys. Lett. 82, 1419 (2003).Google Scholar
8. Ma, L. P., Liu, J., Pyo, S. M., Xu, Q. F., and Yang, Y., Molec. Cryst. Liq. Cryst. 378, 185 (2002).Google Scholar
9. He, J., Ma, L. P., Wu, J., and Yang, Y., J. Appl. Phys. 97, 64507 (2005).Google Scholar
10. Bozano, L. D., Kean, B. W., Beinhoff, M., Carter, K. R., Rice, P. M., and Scott, J. C., Adv. Funct. Mater. 15, 1933 (2005).Google Scholar
11. Bozano, L. D., Kean, B. W., Deline, V. R., Salem, J. R., and Scott, J. C., Appl. Phys. Lett. 84, 607 (2004).Google Scholar
12. Simmons, J. G. and Verderber, R. P., Proc. R. Soc. London, Ser. A 301, 77 (1967).Google Scholar
13. Lai, Y. S., Tu, C. H., Kwong, D. L., and Chen, J. S., Appl. Phys. Lett. 87, 122101 (2005).Google Scholar
14. Dearnaley, G., Stoneham, A. M., and Morgan, D. V., Rep. Prog. Phys. 33, 1129 (1970).Google Scholar
15. Bandyopadhyay, A. and Pal, A. J., J. Phys. Chem. B 109, 6084 (2005).Google Scholar
16. Ling, Q., Song, Y., Ding, S. J., Zhu, C., Chan, D. S. H., Kwong, D.-L., Kang, E.-T., and Neoh, K. G., Adv. Mater. (Weinheim, Ger.) 17, 455 (2005).Google Scholar
17. Chu, C. W., Quyang, J., Tseng, J. H., and Yang, Y., Adv. Mater. (Weinheim, Ger.) 17, 1440 (2005).Google Scholar
18. Smith, S. and Rorrest, S. R., Appl. Phys. Lett. 84, 5019 (2004).Google Scholar
19. Chen, J. and Ma, D., Appl. Phys. Lett. 87, 023505 (2005).Google Scholar
20. Tang, W., Shi, H. Z., Xu, G., Ong, B. S., Popovic, Z. D., Deng, J. C., Zhao, J., and Rao, G. H., Adv. Mater. (Weinheim, Ger.) 17, 2307 (2005).Google Scholar
21. Yoon, W. J., Chung, S. Y., Berger, P. R., and Asar, S. M., Appl. Phys. Lett. 87, 203506 (2005).Google Scholar
22. Chen, J., Wang, W., Reed, M. A., Rawlett, A. M., Price, D. W., and Tour, J. M., Appl. Phys. Lett. 77, 1224 (2000).Google Scholar
23. Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W., and Tour, J. M., Appl. Phys. Lett. 78, 3735 (2001).Google Scholar
24. Le, J. D., He, Y., Hoye, T. R., Mead, C. C., and Kiehl, R. A., Appl. Phys. Lett. 83, 5518 (2003).Google Scholar
25. Khondaker, S. I., Yao, Z., Cheng, L., Henderson, J. C., Yao, Y. X., and Tour, J. M., Appl. Phys. Lett. 85, 645 (2004).Google Scholar