Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T02:59:06.505Z Has data issue: false hasContentIssue false

Defect annihilation in chemo-epitaxial directed self-assembly: Computer simulation and Self-Consistent Field Theory

Published online by Cambridge University Press:  19 March 2015

Marcus Müller
Affiliation:
Institut für Theoretische Physik, Georg-August Universität, 37073 Göttingen, Germany
Weihua Li
Affiliation:
Institut für Theoretische Physik, Georg-August Universität, 37073 Göttingen, Germany Department of Macromolecular Science, Fudan University, Shanghai, China
Juan Carlos Orozco Rey
Affiliation:
Institut für Theoretische Physik, Georg-August Universität, 37073 Göttingen, Germany
Ulrich Welling
Affiliation:
Institut für Theoretische Physik, Georg-August Universität, 37073 Göttingen, Germany
Get access

Abstract

Except at the order-disorder transition, defects in lamella-forming block copolymers have a free energy of several hundreds kBT where kBT denotes the thermal energy scale. Thus, they cannot be conceived as equilibrium fluctuations around a perfectly ordered state. Instead, defects, which are observed in experiments, are formed in the course of self-assembly. Their behavior is dictated by the kinetics of structure formation, in particular, the kinetic pathways of defect motion and annihilation.

Computational modeling can contribute to optimize materials parameters such as film thickness, interaction between copolymer blocks and substrate, geometry of confinement, in order to avoid the formation of defects in the early stages of structure formation or facilitate defect annihilation. Computations also provide fundamental insights into the universal physical mechanisms of directing the self-assembly, addressing the equilibrium structure and thermodynamics as well as the kinetics of self-assembly.

We present computer simulation of highly coarse-grained particle-based models and self-consistent field calculations that allow us to access the long time and large length scales associated with self-assembly. These calculations provide information about the free-energy landscape and mechanisms of defect annihilation in thin films. Additionally, opportunities for directing the kinetics of self-assembly by temporal changes of thermodynamic conditions are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bates, F. S. and Fredrickson, G. H., Ann. Rev. Phys. Chem. 41, 525 (1990).CrossRefGoogle Scholar
Hammond, M. R., Cochran, E., Fredrickson, G. H., and Kramer, E. J., Macromolecules 38, 6575 (2005).CrossRefGoogle Scholar
Segalman, R. A., Hexemer, A., Hayward, R. C., and Kramer, E. J., Macromolecules 36, 3272 (2003).CrossRefGoogle Scholar
Harrison, C., Adamson, D. H., Cheng, Z., Sebastian, J. M., Sethuraman, S., Huse, D. A., Register, R. A. and Chaikin, P. M., Science 290, 1558 (2000).CrossRefGoogle Scholar
Harrison, C., Cheng, Z., Sethuraman, S., Huse, D. A. and Chaikin, P. M., Phys. Rev. E 66, 011706 (2002).CrossRefGoogle Scholar
Nagpal, U., Müller, M., Nealey, P.F., and de Pablo, J.J., ACS Macro Letters 1, 418 (2012).CrossRefGoogle Scholar
Stoykovich, M. P., Kang, H., Daoulas, K. C., Liu, G., Liu, C. C., de Pablo, J. J., Müller, M. and Nealey, P. F., ACS Nano 1, 168 (2007).CrossRefGoogle Scholar
Daoulas, K. C., Cavallo, A., Shenhar, R. and Müller, M., Phys. Rev. Lett. 105, 108301 (2010).CrossRefGoogle Scholar
Xie, N., Li, W.H., Qiu, F. and Shi, A.C., ACS Macro Lett. 3, 906 (2014).CrossRefGoogle Scholar
Li, W., Xie, N., Qiu, F., Yang, Y., and Shi, A.C., J Chem. Phys. 134, 144901 (2011).CrossRefGoogle ScholarPubMed
Vega, D. A., Harrison, C. K., Angelescu, D. E., Trawick, M. L., Huse, D. A., Chaikin, P. M. and Register, R. A., Phys. Rev. E 71, 061803 (2005).CrossRefGoogle Scholar
Campbell, I. P., Lau, G. J., Feaver, J. L. and Stoykovich, M. P., Macromolecules 45, 15871594 (2012).CrossRefGoogle Scholar
Li, W. H., Nealey, P. F., de Pablo, J. J. and Müller, M., Phys. Rev. Lett. 113, 168301 (2014).CrossRefGoogle Scholar
Horvat, A., Sevink, G. J. A., Zvelindovsky, A. V., Krekhov, A. and Tsarkova, L., ACS Nano 2, 1143 (2008).CrossRefGoogle Scholar
Peach, M., and Koehler, J.S., Phys. Rev. 80, 436 (1950).CrossRefGoogle Scholar
Müller, M., J. Stat. Phys. 145, 967 (2011).CrossRefGoogle Scholar
Daoulas, K. C. and Müller, M., J. Chem. Phys. 125, 184904 (2006).CrossRefGoogle Scholar
Daoulas, K. C., Müller, M., Stoykovich, M. P., Papakonstantopoulos, Y. J., de Pablo, J. J., Nealey, P. F., Park, S. M. and Solak, H. H., J. Polym. Sci. B: Polymer Physics 44, 2589 (2006).CrossRefGoogle Scholar
Müller, M. and Daoulas, K. C., J. Chem. Phys. 129, 164906 (2008).CrossRefGoogle ScholarPubMed
Izumi, K., Laachi, N., Man, X., Delaney, K. T., and Fredrickson, G. H., Proc. SPIE 9049, 904922 (2014).Google Scholar
Müller, M. and Daoulas, K.Ch., J. Chem. Phys. 128, 024903 (2008).CrossRefGoogle Scholar
Müller, M., Daoulas, K.Ch., and Norizoe, Y., Phys. Chem. Chem. Phys 11, 2087 (2009).CrossRefGoogle Scholar
Müller, M., Smirnova, Y.G., Marelli, G., Fuhrmans, M., and Shi, A.C., Phys. Rev. Lett. 108, 228103 (2012).CrossRefGoogle Scholar
Reister, E., Müller, M. and Binder, K., Phys. Rev. E 64, 041804 (2001).CrossRefGoogle Scholar
Müller, M. and Schmid, F., Adv. Polym. Sci. 185, 1 (2005).CrossRefGoogle Scholar
Maragliano, L., Fischer, A., Vanden-Eijnden, E. and Ciccotti, G., J. Chem. Phys. 125, 024106 (2006).CrossRefGoogle Scholar
W. E, Ren, W. and Vanden-Eijnden, E., J. Chem. Phys. 126, 164103 (2007).CrossRefGoogle Scholar
Naughton, J.R. and Matsen, M.W., Macromolecules 35, 5688 (2002).CrossRefGoogle Scholar
LeSar, R., Annual Rev. Condens. Mat. Phys. 5, 375 (2014)CrossRefGoogle Scholar
Müller, M. and Daoulas, K. C., Phys. Rev. Lett. 107, 227801 (2011).CrossRefGoogle Scholar
Takahashi, H., Laachi, N., Delaney, K.T., Hur, S.M., Weinheimer, C.J., Shykind, D., and Fredrickson, G.H., Macromolecules 45, 6253 (2012).CrossRefGoogle Scholar
Edwards, E. W., Stoykovich, M. P., Müller, M., Solak, H. H., de Pablo, J. J. and Nealey, P. F., J. Polym. Sci. B: Polymer Physics 43, 3444 (2005).CrossRefGoogle Scholar
Glaser, J., Medapuram, P., Beardsley, T.M., Matsen, M.W., and Morse, D.C., Phys. Rev. Lett. 113, 068302 (2014).CrossRefGoogle Scholar
Fredrickson, G. H. and Helfand, E., J. Chem. Phys. 87, 697 (1987).CrossRefGoogle Scholar