Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T04:03:57.905Z Has data issue: false hasContentIssue false

Deep Surface Trap States at ZnO Nanorods Arrays

Published online by Cambridge University Press:  14 July 2014

Christa Bünzli
Affiliation:
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK Current affiliation: Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland.
David Parker
Affiliation:
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
Kieren Bradley
Affiliation:
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK Bristol Centre for Functional Nanomaterials, Nanoscience and Quantum Information Building, Tyndall Avenue, Bristol, BS8 1FD, UK
David J. Fermín*
Affiliation:
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
Get access

Abstract

Deep surface trap states present in hydrothermally grown ZnO nanorod (NR) arrays are monitored by photoelectrochemical and impedance spectroscopy. NR arrays were grown on a thin compact ZnO film deposited by pulsed laser deposition. Photocurrent responses upon square-wave illumination and lock-in detection of the as-grown NR arrays in the presence of Na2SO3 at pH 10 were characterized by a complex potential dependence indicating the presence of deep trap states. At a given frequency of light perturbation, the photocurrent amplitude increases as the potential bias is shifted towards values more positive than the flat band potential. Increasing the potential further than 0.8 V positive to the flat band potential leads to a decrease in the photocurrent amplitude. The potential of maximum photocurrent amplitude overlaps with a sharp decrease in the interfacial capacitance. The dependence of the photocurrent amplitude on bias potential strongly suggests the presence of deep electron trap states. The effect of the deep trap states are minimized by annealing of the NR arrays in air at 340° C.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dittrich, T., Belaidi, A. and Ennaoui, A., Sol. Energy Mater. Sol. Cells 95(6), 15271536 (2011).CrossRefGoogle Scholar
Kamat, P. V., J. Phys. Chem. C 116(22), 1184911851 (2012).CrossRefGoogle Scholar
Galoppini, E., Rochford, J., Chen, H., Saraf, G., Lu, Y., Hagfeldt, A. and Boschloo, G., J. Phys. Chem. B 110(33), 1615916161 (2006).CrossRefGoogle Scholar
Martinson, A. B., McGarrah, J. E., Parpia, M. O. and Hupp, J. T., Phys. Chem. Chem. Phys. 8(40), 46554659 (2006).CrossRefGoogle Scholar
Lehraki, N., Aida, M. S., Abed, S., Attaf, N., Attaf, A. and Poulain, M., Current Applied Physics 12(5), 12831287 (2012).CrossRefGoogle Scholar
Peulon, S. and Lincot, D., Adv. Mater. 8(2), 166-& (1996).CrossRefGoogle Scholar
O'Regan, B., Schwartz, D. T., Zakeeruddin, S. M. and Gratzel, M., Adv. Mater. 12(17), 1263-+ (2000).Google Scholar
Yoshida, T., Komatsu, D., Shimokawa, N. and Minoura, H., Thin Solid Films 451-452, 166169 (2004).CrossRefGoogle Scholar
Govender, K., Boyle, D. S., Kenway, P. B. and O'Brien, P., J. Mater. Chem. 14(16), 25752591 (2004).CrossRefGoogle Scholar
Kim, K. H., Utashiro, K., Abe, Y. and Kawamura, M., Int. J. Electrochem. Sci. 9(4), 20802089 (2014).Google Scholar
Wu, J. J. and Liu, S. C., Adv. Mater. 14(3), 215 (2002).3.0.CO;2-J>CrossRefGoogle Scholar
Huang, J., Yin, Z. and Zheng, Q., Energ. Environ. Sci. 4(10), 3861 (2011).CrossRefGoogle Scholar
Vayssieres, L., Adv. Mater. 15(5), 464466 (2003).CrossRefGoogle Scholar
Yi, G. C., Wang, C. R. and Park, W. I., Semicond. Sci. and Tech. 20(4), S22S34 (2005).CrossRefGoogle Scholar
Mora-Seró, I. n., Fabregat-Santiago, F., Denier, B., Bisquert, J., Tena-Zaera, R. n., Elias, J. and Lévy-Clément, C., App. Phys. Lett. 89(20), 203117 (2006).CrossRefGoogle Scholar
Anta, J. A., Guillén, E. and Tena-Zaera, R., J. Phys. Chem. C 116(21), 1141311425 (2012).10.1021/jp3010025CrossRefGoogle Scholar
Reddy, N. K., Devika, M. and Tu, C. W., Mater. Lett. 120, 6264 (2014).CrossRefGoogle Scholar
Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P. D., Nature Mater. 4(6), 455459 (2005).CrossRefGoogle Scholar
Hagedorn, K., Forgacs, C., Collins, S. and Maldonado, S., J. Phys. Chem. C 114(27), 1201012017 (2010).CrossRefGoogle Scholar
Djurišić, A. B., Leung, Y. H., Tam, K. H., Hsu, Y. F., Ding, L., Ge, W. K., Zhong, Y. C., Wong, K. S., Chan, W. K., Tam, H. L., Cheah, K. W., Kwok, W. M. and Phillips, D. L., Nanotechnology 18(9), 095702 (2007).CrossRefGoogle Scholar
McCluskey, M. D. and Jokela, S. J., J. Appl. Phys. 106(7), 071101 (2009).CrossRefGoogle Scholar
Henley, S. J., Ashfold, M. N. R., Nicholls, D. P., Wheatley, P. and Cherns, D., Appl. Phys. a-Mater. Sci. Process. 79 (4-6), 11691173 (2004).CrossRefGoogle Scholar
Schoenmakers, G. H., Vanmaekelbergh, D. and Kelly, J. J., J. Phys. Chem. 100(8), 32153220 (1996).CrossRefGoogle Scholar
Schoenmakers, G. H., Vanmaekelbergh, D. and Kelly, J. J., J. Chem. Soc.-Faraday Trans. 93(6), 11271132 (1997).CrossRefGoogle Scholar
Fermín, D. J., Ponomarev, E. A. and Peter, L. M., J. Electroanal. Chem. 473 (1–2), 192203 (1999).10.1016/S0022-0728(99)00109-6CrossRefGoogle Scholar
Peter, L. M., Chem. Rev. 90(5), 753769 (1990).CrossRefGoogle Scholar