Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:27:07.521Z Has data issue: false hasContentIssue false

Crystallization-induced Stress in Phase Change Random Access Memory

Published online by Cambridge University Press:  01 February 2011

Minghua Li
Affiliation:
[email protected], Data Storage Institute, A*STAR (Agency for Science, technology and Research), Singapore, Singapore
Jianming Li
Affiliation:
[email protected], Data Storage Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
Luping Shi
Affiliation:
[email protected], Data Storage Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
Hongxin Yang
Affiliation:
[email protected], Data Storage Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
Tow Chong Chong
Affiliation:
[email protected], Data Storage Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
Yi Li
Affiliation:
[email protected], National University of Singapore, Department of Materials Science and Engineering, Singapore, Singapore
Get access

Abstract

Switched phase change material in Phase Change Random Access Memory (PCRAM) is confined within a solid surrounding. As a result of mechanical properties and microstructure differences between the crystalline and the amorphous phases, strains and stresses are generated and may degrade the performance of PCRAM devices. This paper investigated the crystallization-induced stress in phase change Ge2Sb2Te5 (GST) nano film. The electric-thermal and thermo-mechanical simulation results show that the increases of both of the Young's modulus and Coefficient of Thermal Expansion (CTE) are responsible for the stress generation upon crystallization. The XRD studies correlate the strains and stresses with the lattice deformation in crystalline GST films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pirovano, A., Lasaita, A. L., Benvenuti, A., Pellizzer, F., Bez, R., IEEE Trans. Electron Devices, 51, 452 (2004).Google Scholar
2. Lankhorst, M. H. R., Ketelaars, B. W. S. M. S., and Wolters, R. A. M., Nature Mater., 4, 347 (2005).Google Scholar
3. Pedersen, T. P. L., Kalb, J., Njoroge, W. K., Wamwangi, D., and Wuttig, M., Appl. Phys. Lett., 79, 3597 (2001).Google Scholar
4. kolobov, A. V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., Katayama, Y., Hammouda, T., and Uruga, T., Phys. Rev. Lett., 97, 035701, (2006).Google Scholar
5. Guo, Q., Li, M., Li, Y., Shi, L., Chong, T. C., Kalb, J. A., and Thompson, C. T., Appl. Phys. Lett., 93, 221907 (2008).Google Scholar
6. Chen, N., Krusin-Elbaum, L., Cabral, C. Jr., Lavoie, C., Sun, J., and Rossnagel, S., 21st IEEE Non-Volatile Semicon. Memory Workshop, pp. 97 (2006).Google Scholar
7. Kalb, J., Spaepen, F., Pedersen, T. P. L., and Wuttig, M., J. Appl. Phys., 94, 4908 (2003).Google Scholar
8. Li, J. M., Shi, L. P., Yang, H. X., Lim, K. G., miao, X. S., Lee, H. K., and Chong, T. C., Mater. Res. Soc. Symp. Proc., 1072, G0318 (2008).Google Scholar
9. Perry, A. J., Sue, J. A., and Martin, P. J., Surf. Coat. Technol., 81, 17 (1996).Google Scholar
10. Sue, J. A., Surf. Coat. Technol., 68/69, 259 (1994).Google Scholar