Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:34:32.584Z Has data issue: false hasContentIssue false

Creation of Nanocrystals Via a Tip-Induced Solid-Solid Transformation

Published online by Cambridge University Press:  10 February 2011

Jian Zhang
Affiliation:
Department of Chemistry and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Jie Liu
Affiliation:
Department of Chemistry and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Jinlin Huang
Affiliation:
Department of Chemistry and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Philip Kim
Affiliation:
Department of Chemistry and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Charles M. Lieber
Affiliation:
Department of Chemistry and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

Scanning tunneling microscopy (STM) is a powerful tool for nanoscale research since it can both create and probe the properties of nanostructures. We have used STM to create T-phase TaSe2 nanocrystals embedded in H-phase TaSe2 through a tip-induced solid-solid phase transition at liquid He temperature. Atomic-resolution images have been used to develop a structural model to understand this solid-solid phase transformation. Furthermore, STM studies of the charge density wave (CDW) state in the T-TaSe2 nanocrystals have been used to address CDW physics in finite dimensions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eigler, D.M. and Schweizer, E. K., Nature 344, 524 (1990).Google Scholar
2. Whitman, L. J., Stroscio, J. A., Dragoset, R. A. and Celotta, R. J., Science 251, 1206 (1991).Google Scholar
3. Lyo, I. -W. and Avouris, Ph., Science, 253, 173 (1991).Google Scholar
4. Jung, T. A., Schlittler, R. R., Gimzewski, J. K., Tang, H. and Joachim, C., Science 271, 181 (1996).Google Scholar
5. Crommie, M. F., Lutz, C. P. and Eigler, D. M., Nature 363 524 (1993);Google Scholar
Crommie, M. F., Lutz, C. P. and Eigler, D. M., Science 262 218 (1993).Google Scholar
6. Avouris, Ph. and Lyo, I. -W., Science 264, 942 (1994).Google Scholar
7. Snow, E. S. and Campbell, P. M., Science 270, 1639 (1995).Google Scholar
8. Sheehan, P. E. and Lieber, C. M., Science 272, 1158 (1996).Google Scholar
9. Zhang, J., Liu, J., Huang, J. L., Kim, P. and Lieber, C. M., Science 274, 757(1996).Google Scholar
10. Wilson, J. A., DiSalvo, F. J., Mahajan, S., Adv. Phys. 24, 117 (1975).Google Scholar
11. Binnig, G., Rohrer, H., Gerber, C., Weibel, E., Appl. Phys. Lett. 40, 178(1982); Phys. Rev. Lett. 49, 57(1982); Physica 109/110b, 2075(1982).Google Scholar
12. Coleman, R. V., Giambattista, B., Hansma, P. K., Johnson, A., McNairy, W. W., Slough, C. G., Adv. Phys. 37, 559 (1988).Google Scholar
13. Stroscio, J. A. and Eigler, D. M., Science 254, 1319 (1991).Google Scholar
14. Persson, B. N. and Avouris, Ph., Chem. Phys. Lett. 242, 483489 (1995).Google Scholar
15. Peierls, R. E., Quantum Theory of Solids (Oxford University Press, 1955), p. 108.Google Scholar
Fröhlich, H., Pro. Roy. Soc. A 223, 296 (1954).Google Scholar