No CrossRef data available.
Published online by Cambridge University Press: 03 September 2012
Extensive Research is performed in many countries in order to evaluate the spent fuel behaviour under repository conditions. Several aspects as the control of the oxidative spent fuel dissolution by secondary phases formation are not yet clear.
Coprecipitation experiments from SIMFUEL solutions are performed to study if minor elements will influence the formation of secondary phases. Therefore, coprecipitation studies from SIMFUEL solutions aims at identification of stable phases of significant simulated fission products. These experiments provide upper limits for solution concentration and distribution ratios of simulate fission products at several pH values. SIMFUEL pellets, which simulate an irradiated fuel with burnup of 50 GWd/tU were provided by AECL Research Laboratories, Canada. Experiments were carried out by addition of an aliquot of the initial SIMFUEL solution to 5 m NaCI free of carbonates solution. The selected pH was maintained constant during the experiments. The pH range considered was from 5.5 to 9.3. Analyses of the solutions were performed for uranium by Laser fluorescence and for the minor elements by ICP-MS. Solid phases formed at pH 5.5 were dissolved and analysed by ICP-MS. Results of the evolution in solution vs. pH of simulated fission products concentrations are shown in this paper.