Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:40:24.677Z Has data issue: false hasContentIssue false

Clusters-a New Source for Atomically Engineered Materials

Published online by Cambridge University Press:  28 February 2011

P. Jena
Affiliation:
Physics Department, VCU, Richmond, VA 23284–2000
S. N. Khanna
Affiliation:
Physics Department, VCU, Richmond, VA 23284–2000
B. K. Rao
Affiliation:
Physics Department, VCU, Richmond, VA 23284–2000
M. Manninen
Affiliation:
Physics Department, University of Jyvaskyla, Jyvaskyla, Finland
Get access

Abstract

The electronic structure and properties of small clusters are strongly dependent on their size. These size specific properties are illustrated by confining the discussion to three different topics (1) interaction of hydrogen with clusters (2) effect of temperature and magnetic field on the magnetization of clusters and (3) reaction of clusters with gas atoms. It is shown that the electronic energy levels that are strongly dependent on cluster size give rise to the size specific electronic properties of clusters. In cluster hydrides certain elements are found to absorb more hydrogen per atom in cluster form than in a crystalline form. The magnetization of clusters increases as a function of cluster size and externally applied magnetic field. In clusters reacting with gas atoms, it is possible to find the product cluster in an electronically excited state. The energetics of these states are strongly dependent on the cluster size and the reacting gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. “Physics and Chemistry of Small Clusters”, edited by Jena, P., Rao, B.K., and Khanna, S.N., (Plenum Press, N.Y., 1987).Google Scholar
2. Kappes, M.M., Radi, P., Schar, M., and Schumacher, E., Chem. Phys. Lett. 119. 11 (1985).CrossRefGoogle Scholar
3. Parks, E.K., Liu, K., Richtsmeier, S.C., Pobo, L.G., and Riley, S.J., J. Chem. Phys. 82, 5470 (1985).CrossRefGoogle Scholar
4. Whetter, R.L., Cox, D.M., Trevor, D.J., and Kaldor, A., Phys. Rev. Lett. 54, 1494 (1985).CrossRefGoogle Scholar
5. Hehre, W.J., Radom, L., Schleyer, P.V.R., and Pople, J.A., Ab-initio Molecular Orbital Theory, John Wiley, New York, 1986.Google Scholar
6. Hohenberg, P. and Kohn, W., Phys. Rev. B 136 (1964) B864;CrossRefGoogle Scholar
Kohn, W. and Sham, L.J., Phys. Rev. 140 (1965) A1133.CrossRefGoogle Scholar
7. Rao, B.K., Khanna, S.N., and Jena, P., Phys. Rev. B (in press).Google Scholar
8. Cox, D.M., Fayet, P., Brickman, R., Hahn, M.Y., and Kaldor, A., Catalysis Lett. 4, 271 (1990).CrossRefGoogle Scholar
9. Khanna, S.N., Martins, J.L., Rao, B.K., and Jena, P. in Ref. 1, p. 435.Google Scholar
10. Liu, F., Press, M.R., Khanna, S.N., and Jena, P., Phys. Rev. B 39, 6914 (1989) and referenced therein.CrossRefGoogle Scholar
11. de Heer, W.A., Milani, P., and Chatelain, A., Phys. Rev. Lett. 65, 488 (1990).CrossRefGoogle Scholar
12. Merikoski, J., Timonen, J., Manninen, M., and Jena, P., (Submitted to Phys. Rev. Lett.)Google Scholar
13. Bucher, J.P., Douglass, D.C., Xia, P., Haynes, B., and Bloomfield, L.A. (submitted for publication).Google Scholar
14. Jena, P., Khanna, S.N., and Rao, B.K., Chem. Phys. Lett. 171, 439 (1990).CrossRefGoogle Scholar
15. Cobb, S.H., Woodward, R., and Gole, J.L., Chem. Phys. Lett. 143, 205 (1988).CrossRefGoogle Scholar
16. Kratschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature 347, 354 (1990).CrossRefGoogle Scholar