No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
In a grazing incidence x-ray diffuse scattering study of defects in boron implanted and annealed silicon we have discovered narrow rods of intensity along [111] directions. These diffuse rods of intensity arise from stacking faults formed in the early stages of annealing in the range around 1000°C. From the width of the stacking fault induced rods we can estimate their size, while the integrated intensity is a measure of the total stacking fault area in the implanted layer. Surprisingly we find that these faults initially grow in size and density and after reaching a maximum begin to dissolve and ultimately are totally annihilated. The intensity rods are distinct from the point defect or point defect cluster scattering in the tails of the Bragg peaks referred to as Huang Scattering. From the nature of the q dependence of the diffuse scattering in the Bragg tails we find unequivocal evidence for the presence of clusters in our annealed samples. The average effective size seems remarkably independent of annealing temperature. These observations will be discussed in the context of the enhanced diffusion of boron over its bulk value.