Article contents
Characterization of Thin Film CdTe photovoltaic materials deposited by high plasma density magnetron sputtering
Published online by Cambridge University Press: 20 June 2011
Abstract
A new magnetron sputtering strategy is introduced that utilizes high plasma density (~5mA.cm-2) to avoid or reduce high temperature processing. The technique uses magnetrons of opposing magnetic polarity to create a “closed field” in which the plasma density is enhanced without the need for high applied Voltages. A batch system has been used which employs a rotating vertical drum as the substrate carrier and a symmetrical array of linear magnetrons. The magnetrons are fitted with target materials for each of the thin films required in the photovoltaic (PV) stack including the CdTe absorber layer, CdS window layer, metal contact using the conventional superstrate configuration. The “closed field” sputtering technology allows scale up not only for larger batch system designs but it is also configurable for “in-line” or “roll to roll” formats for large scale production. The morphology of each of the layers is characterized using a variety of structural and optical techniques including Field Emission Gun SEM and X-ray diffraction (XRD).
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2011
References
REFERENCES
- 4
- Cited by