Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T16:28:26.257Z Has data issue: false hasContentIssue false

Characteristics of ZnO Thin Film for the Resistive Random Access Memory

Published online by Cambridge University Press:  01 February 2011

Jung Won Seo
Affiliation:
Seung Jae Baik
Affiliation:
[email protected], KAIST, EE, Daejeon, Korea, Republic of
Sang Jung Kang
Affiliation:
[email protected], KAIST, EE, Daejeon, Korea, Republic of
Koseng Su Lim
Affiliation:
[email protected], KAIST, EE, Daejeon, Korea, Republic of
Get access

Abstract

We report resistive switching characteristics in Pt/ZnO/Pt devices where ZnO thin film is fabricated at various oxygen conditions. With the increase of oxygen contents in ZnO thin film, the forming voltage is gradually increased while reset and set voltages are almost unchanged. We also investigated the effect of top electrodes on resistive switching of top electrode/ZnO/Pt device. For a Pt/ZnO/Pt device, it exhibits the excellent resistive switching behavior due to high electrical field of the well-defined Schottky barrier. For Al/ZnO/Pt device, little resistive switching phenomena were occurred due to leakage current of the weak Schottky (or Ohmic) contact.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Liu, S. Q., Wu, N. J., and Ignatiev, A., Appl. Phys. Lett. 76, 2749 (2000).10.1063/1.126464Google Scholar
2 Watanabe, Y., Bednorz, J. G., Bietsch, A., Gerber, Ch., Widmer, D., Beck, A., and Wind, S. J., Appl. Phys. Lett. 78, 3738 (2001).10.1063/1.1377617Google Scholar
3 Lai, Y. S., Tu, C. H., Kwong, D. L., and Chen, J. S., Appl. Phys. Lett. 87, 122101 (2005).10.1063/1.2051801Google Scholar
4 Villafuerte, M., Heluani, S. P., Juarez, G., Simonelli, G., Braunstein, G., and Duhalde, S., Appl. Phys. Lett. 90, 052105 (2007).10.1063/1.2437688Google Scholar
5 Jeong, D. S., Schroeder, H., and Waser, R., Appl. Phys. Lett. 89, 082909 (2006).Google Scholar
6 Seo, J. W., Park, J-W., Lim, K. S., Kang, S. J., Hong, Y. H., Yang, J-H., Fang, L., Sung, G. Y., and Kim, H-K., Appl. Phys. Lett. 95, 133508 (2009).10.1063/1.3213390Google Scholar
7 Chang, W-Y., Lai, Y-C., Wu, T-B., Wang, S-F., Chen, F., and Tsai, M-J., Appl. Phys. Lett. 92, 022110 (2008).Google Scholar
8 Seo, J. W., Park, J-W., Lim, K. S., J-H, Yang, and Kang, S. J., Appl. Phys. Lett. 93, 223505 (2008)10.1063/1.3041643Google Scholar
9 Park, J-W., Park, J-W., Kim, D-Y., and Lee, J-K., J. Vac. Sci. Technol. 23, 1309 (2005).10.1116/1.1953687Google Scholar
10 Lide, D. R., CRC handbook on Chemistry and Physics (CRC press, Florida, 2008)Google Scholar