Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:46:14.833Z Has data issue: false hasContentIssue false

Calix[8]arene Functionalized Polyglycerol Nanogels for Encapsulation and Stabilization of Fluorescent Dyes

Published online by Cambridge University Press:  27 February 2012

Dirk Steinhilber
Affiliation:
Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany
Florian Paulus
Affiliation:
Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany
Andrew T. Zill
Affiliation:
University of Illinois at Urbana Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
Steven C. Zimmerman
Affiliation:
University of Illinois at Urbana Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
Rainer Haag
Affiliation:
Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany
Get access

Abstract

In this paper we report on the preparation of calix[8]arene functionalized polyglycerol nanogels by miniemulsion polymerization. The gel macromonomers were prepared by anionic ring-opening multibranching polymerization of glycidol using calix[8]arene as initiator. 1,1′,3,3,3′,3′-hexamethyl-2,2′-indotricarbocyanine iodide (HITC) red fluorescent dye was used as a guest molecule. Photobleaching upon strong laser illumination was significantly reduced when the dye was encapsulated inside the nanogel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Behl, M., Razzaq, M. Y., Lendlein, A., Adv. Mater., 22, 3388, (2010).Google Scholar
2. Sisson, A. L., Haag, R., Soft Matter, 6, 4968, (2010).Google Scholar
3. Haag, R., Kratz, F., Angew. Chem. Int. Ed., 45, 1198, (2006).Google Scholar
4. Calderon, M., Quadir, M. A., Sharma, S. K., Haag, R., Adv. Mater., 22, 190, (2010).Google Scholar
5. Sunder, A., Hanselmann, R., Frey, H., Mülhaupt, R., Macromolecules, 32, 4240, (1999).Google Scholar
6. Wilms, D., Wurm, F., Nieberle, J., Bohm, P., Kemmer-Jonas, U., Frey, H., Macromolecules, 42, 3230, (2009).Google Scholar
7. Kainthan, R. K., Muliawan, E.B., Hatzikiriakos, S. G., Brooks, D. E., Macromolecules, 39, 7708, (2006).Google Scholar
8. Zhang, S. L., Li, J., Lykotrafitis, G., Bao, G., Suresh, S., Adv. Mater., 21, 419 (2009).Google Scholar
9. Sisson, A. L., Steinhilber, D., Rossow, T., Welker, P., Licha, K., Haag, R., Angew. Chem. Int. Ed., 48, 7540, (2009).Google Scholar
10. Sisson, A. L., Papp, I., Landfester, K., Haag, R., Macromolecules, 42, 556 (2009).Google Scholar
11. Steinhilber, D., Sisson, A. L., Mangoldt, D., Welker, P., Licha, K.., Haag, R., Adv. Funct. Mater., 20, 4133, (2010).Google Scholar
12. Steinhilber, D., Seiffert, S., Heyman, J. A., Paulus, F., Weitz, D. A., Haag, R., Biomaterials, 32, 1311 (2011).Google Scholar
13. Zimmerman, S. C., Quinn, J. R., Burakowska, E., Haag, R., Angew. Chem. Int. Ed., 46, 8164, (2007).Google Scholar
14. Burakowska, E., Quinn, J. R., Zimmerman, S. C., Haag, R., J. Am. Chem. Soc., 10, 10574, (2009).Google Scholar
15. Burakowska, E., Zimmerman, S. C., Haag, R., Small, 5, 2199 (2009).Google Scholar
16. Danylyuk, O. and Suwinska, Kinga, Chem. Commun. 39, 5799 (2009).Google Scholar
17. Tu, C., Zhu, L., Li, P., Chen, Y., Su, Y., Yan, D., Zhu, X., Zhou, G., Chem. Commun. 47, 6063 (2011).Google Scholar
18. Buschmann, V., Weston, K. D., Sauer, M., Bioconj. Chem. 14, 195 (2003).Google Scholar
19. Licha, K., Hessenius, C., Becker, A., Henklein, P., Bauer, M., Wisniewski, S., Wiedenmann, B., Semmler, W., Bioconj. Chem. 12, 44 (2001).Google Scholar
20. Jung, C., Müller, B. K., Lamb, D. C., Nolde, F., Müllen, K., Bräuchle, C., J. Am. Chem. Soc. 128, 5283, (2006).Google Scholar