Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T15:52:16.986Z Has data issue: false hasContentIssue false

Boron Nitride Nanotube, Nanocable and Nanocone

Published online by Cambridge University Press:  15 March 2011

Dmitri Golberg
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Yoshio Bando*
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Laure Bourgeois
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Renzhi Ma
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Kazuhiko Ogawa
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Keiji Kurashima
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Tadao Sato
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
*
*corresponding author. E-mail: [email protected]
Get access

Abstract

Boron nitride nanotubes, nanocones and nanocables were prepared and their atomic structures were identified by using a 300 kV field emission transmission electron microscope equipped with an electron energy loss spectrometer and energy dispersion X-ray detector. Multiwalled BN nanotubes and nanocones were synthesized by reacting C nanotube templates and boron oxide under nitrogen atmosphere at 1723-2023 K. Additions of metal oxide promoters, e.g. MoO3, CuO, and PbO, significantly improved BN-rich nanotube yield at the expense of B-C-N nanotubes. It was shown that BN nanotubes had preferential “zigzag” chirality and exhibited either hexagonal or rhombohedral stacking between shells. An efficient synthetic route for bulk quantities of BN tube production was also developed, where a B-N-O precursor was used during a CVD process. Nanocones of BN were mostly found to have 240° disclinations which ensure the presence of B-N bonds only. One case was observed of a cone constituted of 300° disclination implying that structures may contain line defects of non B-N bonds. The first synthesis of insulating BN nanocables was carried out, where BN nanotubes were entirely filled with Invar Fe-Ni nanorods. The filled nanotube diameters ranged between 30 to 300 nm, whereas the length of filling reached several microns.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: School of Physics and Materials Engineering, PO Box 69M, Monash University, Victoria 3800, AUSTRALIA

References

1. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M. L., Louie, S.G., and Zettl, A., Science 269, 966 (1995).Google Scholar
2. Loiseau, A., Willaime, F., Demoncy, N., Hug, G., and Pascard, H., Phys. Rev. Lett. 76, 4737 (1996).Google Scholar
3. Terrones, M. et al. Chem. Phys. Lett. 259, 568 (1996).Google Scholar
4. Golberg, D., Bando, Y., Eremets, M., Takemura, K., Kurashima, K., and Yusa, H., Appl. Phys. Lett. 69, 2045 (1996).Google Scholar
5. Cumings, J., and Zettl, A., Chem. Phys. Lett. 316, 211 (2000).Google Scholar
6. Bengu, E., and Marks, L.D., Phys. Rev. Lett. 86, 2385 (2000).Google Scholar
7. Bourgeois, L., Bando, Y., Kurashima, K., and Sato, T., Phil. Mag. A80, 129 (2000).Google Scholar
8. Shelimov, K. and Moscovits, M., Chem. Mater. 12, 250 (2000).Google Scholar
9. Bando, Y., Ogawa, K., and Golberg, D., Chem. Phys. Lett. 347, 349 (2001).Google Scholar
10. Golberg, D., Bando, Y., Kurashima, K., and Sato, T., Scripta Mater. 44, 1561 (2001).Google Scholar
11. Iijima, S., Nature 354, 56 (1991).Google Scholar
12. Haanstra, H., Knippenberg, W., and Verspui, G., J. Crys. Growth 16, 71 (1972).Google Scholar
13. Ajayan, P.M. and Iijima, S., Nature 361, 333 (1993).Google Scholar
14. Menon, M., Srivastava, D., Chem. Phys. Lett. 307, 407 (1999).Google Scholar
15. Golberg, D., Han, W., Bando, Y., Bourgeois, L., Kurashima, K., andT. Sato, J. Appl. Phys. 86, 2364 (1999).Google Scholar
16. Golberg, D., Bando, Y., Kurashima, K., Sato, T., Chem. Phys. Lett. 323, 185 (2000).Google Scholar
17. Golberg, D., Bando, Y., Kurashima, K., Sato, T., Sol. St. Comm. 116, 1 (2000).Google Scholar
18. Golberg, D., Bando, Y., Bourgeois, L., Kurashima, K., Sato, T., Appl. Phys. Lett. 77, 1979 (2000) 1979.Google Scholar
19. Golberg, D., Bando, Y., Appl. Phys. Lett. 79, 415 (2001).Google Scholar
20. Terauchi, M., Tanaka, M., Suzuki, K., Ogino, A., Kimura, K., Chem. Phys. Lett. 324, 359 (2000) 359.Google Scholar
21. Demczyk, B.G., Cumings, J., Zettl, A., Ritchie, R.O., Appl. Phys. Lett. 78, 2772 (2001).Google Scholar
22. Ma, R., Bando, Y., Sato, T., and Kurasima, K., Chem. Mater. 13, 2965 (2001).Google Scholar
23. Bourgeois, L., Bando, Y., and Sato, Y., J. Phys. D: Appl. Phys. 33, 1902 (2000).Google Scholar
24. Amelinckx, S., Luyten, W., Krekels, T., Tendeloo, G. Van, and Landuyt, J. Van, J. Cryst. Growth 121, 543 (1992).Google Scholar
25. Wildoer, J.W.G., Venema, L.C., Rinzler, A.C., Smalley, R.E., Dekker, C., Nature 391, 59 (1998).Google Scholar
26. Blase, X., Rubio, A., Louie, S.G., Cohen, M.L., Europhys. Lett. 28, 335 (1994).Google Scholar
27. Dujardin, E., Ebbesen, T.W., Hiura, H., Tanigaki, K., Science 265, 1850 (1994).Google Scholar
28. Tsang, S.C., Chen, Y.K., Harris, P.J.F., Green, M.L.H., Nature 372, 159 (1994).Google Scholar
29. Han, W., Bando, Y., Kurashima, K., Sato, T., Appl. Phys. Lett. 73, 3085 (1998).Google Scholar
30. Ma, R., Bando, Y., and Sato, T., Chem. Phys. Lett. 337, 61 (2000).Google Scholar
31. Ahn, C.C., Krivanec, O.L., Burgner, R.P., Disco, M.M., and Swann, P.R., in “EELS Atlas” (a Joint Project of Arizona State Univ. HREM Facility and Gatan Inc. USA, 1993) p. 8.Google Scholar
32. Mishima, O. and Era, K., in“Science and Technology of Boron Nitride”, ed. Kumashiro, Y. (Marcel Dekker, Inc. the Netherlands, 2000) p. 514.Google Scholar
33. Stansky, D.V., Tsuda, O., Ikuhara, Y., and Yoshida, T., Proc. 56 Conf. of the Japanese Soc. Electon Microscopy, Tokyo, 2000, 35, Suppl.1, p.90.Google Scholar
34. Petrusha, I., personal communication.Google Scholar
35. Louchev, O., and Sato, Y., Appl. Phys. Lett. 74, 194 (1999).Google Scholar
36. Blase, X., Charlier, J.-Ch., DeVita, A., Car, R., Appl. Phys. A68, 293 (1999).Google Scholar
37. Hornbogen, E., “Physical Metallurgy of Steels”, Physical Metallurgy, ed. Cahn, R.W. and Haasen, P., Part II (North-Holland Phys. Publishers, 1983) p. 1131.Google Scholar
38. Bourgeois, L., Bando, Y., Han, W., and Sato, T., Phys. Rev. B61, 7686 (2000).Google Scholar
39. Ge, M. and Sattler, K., Chem. Phys. Lett. 220, 192 (1994). Z2.3.10Google Scholar