Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T04:15:52.532Z Has data issue: false hasContentIssue false

Biomimetic Polymer Nanoparticles Embedding Quantum Dots

Published online by Cambridge University Press:  25 October 2011

Kazuhiko Ishihara
Affiliation:
Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Department of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Yusuke Goto
Affiliation:
Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Ryosuke Matsuno
Affiliation:
Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Get access

Abstract

To develop new functional fluorescence probe based on semiconductor nanoparticles, such as quantum dots (QD)s, we investigated polymer particle embedding QDs and covered with artificial cell membrane-biointerface. These nanoparticles were prepared by assembling 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer as a platform and biomolecules immobilized on the surface of the nanoparticles. The fluorescence property of QDs remained after embedding in the polymer nanoparticles. The MPC polymer surface showed high resistance to non-specific cellular uptake due to the phosphorylcholine groups in the side chain. On the other hand, when cell-penetration oligopeptide, octaarginine was immobilized on the surface, they could permeate the membrane of cells effectively and good fluorescence based on QDs could be observed. Cytotoxicity and inflammation reaction was not produced by these nanoparticles even after immobilization of octapeptide. In conclusion, we could obtain stable fluorescence polymer nanoparticles covered with artificial cell membrane, which are useful as an excellent bioimaging probe and as a novel evaluation tool for biomolecular function in the target cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi, H., Nat. Mater., 4, 435 (2005).10.1038/nmat1390Google Scholar
2. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., Weiss, S., Science, 307, 538 (2005).10.1126/science.1104274Google Scholar
3. Wang, T., Sridhar, R., Korotcov, A., Ting, A.H., Francisc, K., Mitchellc, J., Wang, P.C., Coll. Surf. A: Physicochem. Eng. Aspects, 375, 147 (2011).10.1016/j.colsurfa.2010.11.079Google Scholar
4. Derfus, A. M., Chan, W.C.W., Bhatia, S.N., Nano Lett., 4, 11 (2004).C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).10.1021/nl0347334Google Scholar
5. Matsuno, R., Goto, Y., Konno, T.. Takai, M., Ishihara, K., J. Nanosci. Nanotechnol., 9, 358 (2009).10.1166/jnn.2009.J082Google Scholar
6. Ishihara, K., Ueda, T., Nakabayashi, N., Polym. J., 22, 355 (1990).10.1295/polymj.22.355Google Scholar
7. Ueda, T., Oshida, H., Kurita, K., Ishihara, K., Nakabayashi, N., Polym. J., 24, 1259 (1992).10.1295/polymj.24.1259Google Scholar
8. Ishihara, K., Sci. Technol. Adv. Mater., 1, 131 (2000).10.1016/S1468-6996(00)00012-7Google Scholar
9. Moro, T., Takatori, Y., Ishihara, K., Konno, T., Takigawa, Y., Matsushita, T., Chung, U. I., Nakamura, K., Kawaguchi, H., Nat. Mater., 3, 829 (2004).10.1038/nmat1233Google Scholar
10. Goda, T., Konno, T., Takai, M., Moro, T., Ishihara, K., Biomaterials, 27, 5151 (2006).10.1016/j.biomaterials.2006.05.046Google Scholar
11. Ishihara, K., Oshida, H., Ueda, T., Endo, Y., Watanabe, A., Nakabayashi, N., J. Biomed. Mater. Res., 26, 1543 (1992).10.1002/jbm.820261202Google Scholar
12. Konno, T., Watanabe, J., Ishihara, K., Biomacromolecules, 5, 342 (2004).10.1021/bm034356pGoogle Scholar
13. Watanabe, J., Ishihara, K., Biomacromolecules, 7, 171 (2006).10.1021/bm050544zGoogle Scholar
14. Park, J., Kurosawa, S., Watanabe, J., Ishihara, K., Anal. Chem., 76, 2649 (2004).10.1021/ac035321iGoogle Scholar
15. Ito, T., Watanabe, J., Takai, M., Konno, T., Iwasaki, Y., Ishihara, K., Coll. Surf. B: Biointerfaces, 50, 55 (2006).10.1016/j.colsurfb.2006.04.006Google Scholar
16. Goto, Y., Matsuno, R., Konno, T., Takai, M., Ishihara, K., Biomacromolecules, 9, 828 (2008).10.1021/bm701161dGoogle Scholar
17. Goto, Y., Matsuno, R., Konno, T., Takai, M., Ishihara, K., Biomacromolecules, 9, 3252 (2008).10.1021/bm800819rGoogle Scholar
18. Khalil, I. A., Kogure, K., Futaki, S., Hama, S., Akita, H., Ueno, M., Kishida, H., Kudoh, M., Mishima, Y., Kataoka, K., Yamada, M., Harashima, H., Gene Ther. 14, 682 (2007).10.1038/sj.gt.3302910Google Scholar
19. El-Sayed, A., Khalil, I. A., Kogure, K., Futaki, S., Harashima, H., J. Biol. Chem., 283, 23450 (2008).10.1074/jbc.M709387200Google Scholar