Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T00:29:56.151Z Has data issue: false hasContentIssue false

Biocorrosion of Bacterial Inoculation on the API X52 Pipeline Steel

Published online by Cambridge University Press:  12 May 2015

M. Amaya
Affiliation:
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, México D. F., C.P. 07730, México. E-mail: [email protected]
V. L. Reyes-Martínez
Affiliation:
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, México D. F., C.P. 07730, México. E-mail: [email protected]
J. M. Romero
Affiliation:
Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, México D. F., C.P. 07730, México. E-mail: [email protected]
L. Martinez
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Ap. Postal 43-8, Cuernavaca, Morelos 62251, México. E-mail: [email protected]
R. Perez
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro., 76230, México. E-mail: [email protected]
Get access

Abstract

The role of the initial bacterial inoculates on the biocorrosion of API X52 pipeline steel coupons was evaluated by electrochemical noise technique. The experiments were performed under laboratory conditions using an aerobic bacteria identified as Achromobacter xylosoxidans. Inoculations in the interval strain of 1x104 – 1x108 CFU/ml were evaluated. Environmental scanning electron microscopy (ESEM) analysis was carried out to evaluate the corrosive effects induced on the API X52 electrodes. The results show that all corroded surfaces show sites of localized corrosion, however, the density of de sites of localized corrosion have different grades depending of the initial inoculation used during the experiments. The maximum density sites of localized corrosion were obtained in the experiments with 1x105 CFU/ml. From inoculates of 1x106 CFU/ml the density sites of localized corrosion diminished constantly. The results show that with inoculates over 1x106 CFU/ml, the oxygen demand for the bacterial strain limits the presence of oxygen available into the metallic surface to maintain the corrosion reactions. The results were supported by the EDX analysis of the corrosion products formed on the metallic surfaces where the oxygen peaks diminished as the bacterial inoculation increases.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jigletsova, S.K., Rodin, V.B., Kobelev, V.S., Aleksandrova, N.V., Rasulova, G.E., Kholodenko, V.P., Applied Biochemistry and Microbiology, 36, 550 (2000).CrossRefGoogle Scholar
Liu, H., Xu, L., Zeng, J., British Corrosion Journal, 35, 131 (2000).CrossRefGoogle Scholar
Roden, E.E., Urrutia, M.M, Mann, C.J., Applied and Environmental Microbiology, 66, 1062 (2000).CrossRefGoogle Scholar
Rodin, V.B., Jigletsova, S.K., Kobelev, V.S., Akimova, N.A., Aleksandrova, N.V., Rasulova, G.E., Kholodenko, V.P., Applied Biochemistry and Microbiology, 36, 589 (2000).CrossRefGoogle Scholar
Tanji, Y., Itoh, T., Nakano, T., Hori, K., Unno, H., Corrosion, 58, 232 (2000).CrossRefGoogle Scholar
Dubiel, M., Hsu, C.H., Chien, C.C., Mansfeld, F., Newman, D.K., Applied and Environmental Microbiology, 68, 1440 (2002).CrossRefGoogle Scholar
George, R.P., Marshall, D., Newman, R.C., Corros. Sci., 45, 1999 (2003).CrossRefGoogle Scholar
Gunasekaran, G., Chongdar, S., Gaonkar, S.N., Kumar, P., Corros. Sci., 46, 1953 (2004).CrossRefGoogle Scholar
De Romero, M., Duque, Z., Rodríguez, L., De Rincón, O., Pérez, O., Araujo, I., Corrosion, 61, 68 (2005).CrossRefGoogle Scholar
Jan Roblero, J., Romero, J.M., Amaya, M., Borgne, S.L., Appl. Microbiol. Biotechnol., 64, 862 (2004).CrossRefGoogle Scholar
NACE Report no. 54281, “Review of Current Practices for Monitoring Bacterial Growth in Oilfield Systems”, (Houston, TX: NACE, 1990).Google Scholar
Jayaraman, A., Earthman, J.C., Wood, T.K., Appl. Microbiol. Biotechnol., 47, 62 (1997).CrossRefGoogle Scholar
Ismail, K.M., Gehrig, T., Jayaraman, A., Wood, T.K., Trandem, K., Arps, P.J., Earthman, J.C., Corrosion, 58, 417 (2002).CrossRefGoogle Scholar
Little, B., Ray, R., Corrosion, 58, 424 (2002).CrossRefGoogle Scholar
Romero, J.M., Villalobos, J.L., Sosa, E., Amaya, M., Corrosion, 60, 689 (2004).CrossRefGoogle Scholar
Eden, D.A., John, D.G., Dawson, J.L., “Corrosion Monitoring” International Patent WO 87/07022 (World Intellectual Property Organization, Nov. 19, 1997).Google Scholar