Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T12:51:32.188Z Has data issue: false hasContentIssue false

Atomistic Simulation Techniques in Front-End Processing

Published online by Cambridge University Press:  01 February 2011

Luis A. Marqués
Affiliation:
[email protected], University of Valladolid, Electronics, ETSI Telecomunicacion, Campus Miguel Delibes s/n, Valladolid, 47011, Spain, +34 983 423000 ext 5503, +34 983 423675
Lourdes Pelaz
Affiliation:
[email protected], University of Valladolid, Department of Electronics, ETSI Telecomunicación, Campus Miguel Delibes s/n, Valladolid, 47011, Spain
Iván Santos
Affiliation:
[email protected], University of Valladolid, Department of Electronics, ETSI Telecomunicación, Campus Miguel Delibes s/n, Valladolid, 47011, Spain
Pedro López
Affiliation:
[email protected], University of Valladolid, Department of Electronics, ETSI Telecomunicación, Campus Miguel Delibes s/n, Valladolid, 47011, Spain
María Aboy
Affiliation:
[email protected], University of Valladolid, Department of Electronics, ETSI Telecomunicación, Campus Miguel Delibes s/n, Valladolid, 47011, Spain
Get access

Abstract

Atomistic process models are beginning to play an important role as direct simulation approaches for front-end processes and materials, and also as a pathway to improve continuum modeling. Detailed insight into the underlying physics using ab-initio methods and classical molecular dynamics simulations will be needed for understanding the kinetics of reduced thermal budget processes and the role of impurities. However, the limited sizes and time scales accessible for detailed atomistic techniques usually lead to the difficult task of relating the information obtained from simulations to experimental data. The solution consists of the use of a hierarchical simulation scheme: more fundamental techniques are employed to extract parameters and models that are then feed into less detailed simulators which allow direct comparison with experiments. This scheme will be illustrated with the atomistic modeling of the ion-beam induced amorphization and recrystallization of silicon. The model is based on the bond defect or IV pair, which is used as the building block of the amorphous phase. It is shown that the recombination of this defect depends on the surrounding bond defects, which accounts for the cooperative nature of the amorphization and recrystallization processes. The implementation of this model in a kinetic Monte Carlo code allows extracting data directly comparable with experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaraiz, M., Castrillo, P., Pinacho, R., Martín-Bragado, I. and Barbolla, J., Simulation of Semiconductor Processes and Devices SISPAD 01, ed. Tsoukalas, D. and Tsamis, C. (Springer-Verlag, 2001), p.10.Google Scholar
2.International Technology Roadmad for Semiconductors, http://public.itrs.net/.Google Scholar
3. Law, M.E. and Cea, S.M., Comput. Mat. Sci. 12, 289 (1998).Google Scholar
4. Rafferty, C. and Smith, R.K., CMES-Comp. Model. Eng. 1, 151 (2000).Google Scholar
5. Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H.-J., Rafferty, C.S., Eaglesham, D.J. and Poate, J.M., Appl. Phys. Lett. 70, 2285 (1997).Google Scholar
6. Blochl, P.E., Smargiassi, E., Car, R., Laks, D.G., Andreoni, W., and Pantelides, S.T., Phys. Rev. Lett. 70, 2435 (1993).Google Scholar
7. Smargiassi, E. and Car, R., Phys. Rev. B53, 9760 (1996).Google Scholar
8. Shadigh, B., Lenosky, T.J., Theiss, S.K., Caturla, M.-J., Rubia, T. Diaz de la and Foad, M.A., Phys. Rev. Lett. 83, 4341 (1999).Google Scholar
9. Windl, W., Bunea, M.M., Stumpf, R., Dunham, S.T. and Masquelier, M.P., Phys. Rev. Lett. 83, 4345 (1999).Google Scholar
10. Stillinger, F.H. and Weber, T.A., Phys. Rev. B31, 5262 (1985).Google Scholar
11. Tersoff, J., Phys. Rev. B38, 9902 (1988).Google Scholar
12. Marqués, L.A., Pelaz, L., Castrillo, P. and Barbolla, J., Phys. Rev. B71, 085204 (2005).Google Scholar
13. Gilmer, G.H., Rubia, T. Diaz de la, Stock, D.M., and Jaraiz, M., Nucl. Instrum. Methods Phys. Res. B102, 247 (1995).Google Scholar
14. Slater, J.C. and Coster, G.F., Phys. Rev. 94, 1498 (1954).Google Scholar
15. Alippi, P. and Colombo, L., Phys. Rev. B62, 1815 (2000).Google Scholar
16. Robinson, M.T. and Torrens, I.M., Phys. Rev. B9, 5008 (1974).Google Scholar
17. Hernáqndez-Mangas, J.M., Arias, J., Bailón, L., Jaraíz, M. and Barbolla, J., J. Appl. Phys. 91, 658 (2002).Google Scholar
18.SRIM documentation, http://www.srim.org.Google Scholar
19. Marqués, L.A., Caturla, M. J., Rubia, T.D. de la and Gilmer, G.H., J. Appl. Phys. 80, 6160 (1996).Google Scholar
20. Santos, I., Marqués, L.A., Pelaz, L., López, P., Aboy, M. and Barbolla, J., Mater. Sci. Eng. B124-125, 372 (2005).Google Scholar
21. Santos, I., Marqués, L.A., Pelaz, L. and López, P., Nucl. Instrum. Methods Phys. Res. B255, 110 (2007).Google Scholar
22. Santos, I., Marqués, L.A. and Pelaz, L., Phys. Rev. B74, 174115 (2006).Google Scholar
23. Tang, M., Colombo, L., Zhu, J. and Rubia, T. Diaz de la, Phys. Rev. B55, 14279 (1997).Google Scholar
24. Stock, D.M., Weber, B. and Gärtner, K., Phys. Rev. B61, 8150 (2000).Google Scholar
25. Cargnoni, F., Gatti, C. and Colombo, L., Phys. Rev. B57, 170 (1998).Google Scholar
26. Goedecker, S., Deutsch, T. and Billard, L., Phys. Rev. Lett. 88, 235501 (2002).Google Scholar
27. Marqués, L.A., Pelaz, L., Hernández, J., Barbolla, J. and Gilmer, G.H., Phys. Rev. B64, 45214 (2001).Google Scholar
28. Donnelly, S.E., Birtcher, R.C., Vishnyakov, V.M. and Carter, G., Appl. Phys. Lett. 82, 1860 (2003).Google Scholar
29. Marqués, L.A., Pelaz, L., Aboy, M., Enríquez, L. and Barbolla, J., Phys. Rev. Lett. 91, 135504 (2003).Google Scholar
30. Caturla, M.-J., Rubia, T. Diaz de la, Marqués, L.A. and Gilmer, G.H., Phys. Rev. B54, 16683 (1996).Google Scholar
31. Csepregi, L., Kennedy, E.F., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
32. Battaglia, A., Priolo, F. and Rimini, E., Appl. Phys. Lett. 56, 2622 (1990).Google Scholar
33. Olson, G.L. and Roth, J.A., Mater. Sci. Reports 3, 1 (1988).Google Scholar
34. Masaki, Y., LeComber, P.G. and Fitzgerald, A.G., J. Appl. Phys. 74, 129 (1993).Google Scholar
35. Pelaz, L., Marqués, L.A., Aboy, M. and Barbolla, J., Appl. Phys. Lett. 82, 2038 (2003).Google Scholar
36. Schultz, P.J., Jagadish, C., Ridgway, M.C., Elliman, R.G. and Williams, J.S., Phys. Rev. B44, 9118 (1991).Google Scholar
37. Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).Google Scholar