Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T08:32:08.282Z Has data issue: false hasContentIssue false

AAO Nanowells: Synthesis, in-situ Growth Study, and Applications in Ultra-sensitive Chemical Detection

Published online by Cambridge University Press:  01 February 2011

H. Hau Wang
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, 9700 S. Cass Ave., A-189, Bldg 200, Argonne, IL, 60439, United States, 630-252-3461, 630-252-9151
Kyung-In Son
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, Argonne, IL, 60439, United States
Byeongdu Lee
Affiliation:
[email protected], Argonne National Laboratory, X-Ray Science Division, Argonne, IL, 60439, United States
Jianjiang Lu
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, Argonne, IL, 60439, United States
Catherine Han
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, Argonne, IL, 60439, United States
Get access

Abstract

Anodized aluminum oxide (AAO) membranes consist of locally highly ordered nanopores. The pore diameter (20-200 nm) and pore-to-pore distance are controlled through the anodizing voltage and the choice of etching solution. High aspect ratio over 1,000 can easily be achieved which makes AAO membranes the ideal templates for making nanowires and nanotubes. In this work, the early stage of nanopore formation was studied in-situ with the use of small angle x-ray scattering (SAXS) and glazing incidence GISAXS techniques. The nanopores were found to grow as a function of the square root of growth time. The resulting short nanopores or nanowells with length below 200 nm were further characterized with use of SEM and AFM. These AAO nanowells showed interference color. Their reflectance UV-Vis spectra indicated strong angular dependence and can be understood with a simple single layer (nanoporous alumina over aluminum) model. These spectra are influenced by the nanowells thickness and diameter. Therefore, large array of interferometric AAO nanowells sensors are possible. When these nanowells are coated with Ag or Au thin films, in addition to enhanced interference color, highly sensitive surface enhanced Raman scattering (SERS) effect has been observed. These results will be presented.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Takesue, I., Haruyama, J., Kobayashi, N., Chiashi, S., Maruyama, S., Sugai, T., and Shinohara, H., Phys. Rev. Lett. 96, 057001 (2006). b) Ohgai T., Hoffer X., Gravier L., Wegrow J.-E., and Ansermet J.-P., Nanotech. 14, 978 (2003). c) Qin L., Park S., Huang L., and Mirkin C. A., Science 309, 113 (2005). d) Masuda H. and Fukuda K., Science 268, 1466 (1995).Google Scholar
2. a) Nicewarner-Peña, S. R., Freeman, R. G., Reiss, B. D., He, L., Peña, D. J., Walton, I. D., Cromer, R., Keating, C. D., and Natan, M. J., Science 294, 137 (2001). b) Kohli P., Harrell C. C., Cao Z., Gasparac R., Tan W., and Martin C. R., Science 305, 984 (2004). c) Pellin M.J., Stair P.C., Xiong G., Elam J.W., Birrell Curtiss J., L., George S.M., Han C.Y., Iton L., Kung H., Kung M., and Wang H.-H., Catal. Lett. 102, 127 (2005). d) Steinhart M., Wendorff J.H., Greiner A., Wehrspohn R. B., Nielsch K., Schilling J., Choi J., and Gösele U., Science 296, 1997 (2002). e) Lee W., Jin M-K., et al. Langmuir 20, 7665 (2004).Google Scholar
3. Masuda, H., Satoh, M. Jpn. J. Appl. Phys. 35, L126 (1996).Google Scholar
4. Wang, H.H., Han, C.Y., Willing, G.A., Xiao, Z. Mat. Res. Soc. Symp. Proc. 775, 107 (2003).Google Scholar
5. Lazzari, R., J. Appl. Cryst. 35, 406 (2002).Google Scholar
6. Pan, S., Rothberg, L.J. Nanolett. 6, 811 (2003).Google Scholar