Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T03:56:33.387Z Has data issue: false hasContentIssue false

2.3–2.7µm InGaAsSb/AlGaAsSb Broad-Contact and Single-Mode Ridge-Waveguide SCH-QW Diode Lasers Operating in CW Regime at Room Temperature

Published online by Cambridge University Press:  10 February 2011

D. Garbuzov
Affiliation:
Sarnoff Corporation, CN-5300, Princeton, NJ 08543
H. Lee
Affiliation:
Sarnoff Corporation, CN-5300, Princeton, NJ 08543
Get access

Abstract

Abstract

A new approach in the design of (Al)InGaAsSb/GaSb quantum well separate confinement heterostructure (QW-SCH) diode lasers has led to CW room-temperature lasing up to 2.7 gm. To avoid QW material degradation associated with the miscibility gap in the 2.3–2.7 tim wavelength range, we used highly strained, “quasi-ternary” InxGa1−xSbl−yAsy compounds with 0.25<x<0.38 and y<0.07 as the material for QWs. Very low threshold current density (∼300 A/cm2) and high CW output powers (>100 mW) were obtained from broad contact devices operating in the 2.3–2.6 μm wavelength range. From the spontaneous emission measurements we have identified that the Auger process determines the rate of recombination in quantum well active region over the entire temperature range studied (15– 110 'C) for 2.6 gim lasers and only at temperatures higher than 65 'C for 2.3 pim lasers. If Auger recombination dominates, strong temperature dependence of Auger coefficient leads to the rapid increase of threshold current density with temperature (To ∼40 °C). In the range of 15 – 65 °C for 2.3 gim devicesa monomolecular, non-radiative mechanism dominates and To is about 110 °C. In addition, single-mode CW room temperature ridge-waveguide lasers with wavelength of 2.3-2.55 gim have been fabricated for the first time. The lasers display threshold currents around 50 mA with CW output powers of several milliwatts. Since for a certain range of temperatures and currents one of the longitudinal modes dominates in the spectra of the ridge lasers they have been successfully applied forgas spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Major, J. S., Osinski, J. S., and Welch, D. F., Electron. Lett., 29, p. 2112, (1993).Google Scholar
2. Choi, H. K., Turner, G. W., and Eglash, S. I., IEEE Photon. Technol. Lett., 6, pp. 79, (1994).Google Scholar
3. Bochkarev, A. E., Dolginov, L. M., Drakin, A. E., Eliseev, P. G., and Sverdlov, B. N., Soy. J. Quantum Electron., 18, pp. 13621363, (1988).Google Scholar
4. Garbuzov, D., Lee, H., Khalfin, V., DiMarco, L., Martinelli, R., Menna, R., and Connolly, J. C., IEEE/OSA Conference on Lasers and Electro-Optics '98, San Fransisco, CA, 1998, Postdeadline Paper CPD16-2.Google Scholar
5. Garbuzov, D., Lee, H., Khalfin, V., Martinelli, R., Connolly, J., Belenky, G., J. IEEE Photon. Technol. Lett., 11, 794, (1999).Google Scholar
6. Garbuzov, D., Menna, R., Maiorov, M., Lee, H., Khalfin, V., DiMarco, L., Capewell, D., Martinelli, R., Belenky, G., and Connolly, J., Proc. SPIE, 3628, 124–9, (1999).Google Scholar
7. Joullie, A., Glastre, G., Blondeau, R., Nicolas, J.C., Cuminal, Y., Baranov, A.N., Wilk, A., Garcia, M., Grech, P. and Alibert, C., J. of Selected Topics in Quantum Electronics, 5, pp. 711714, (1999).Google Scholar
8. Garbuzov, D., Maiorov, M., Lee, H., Khalfin, V., Martinelli, R., and Connolly, J., Appl. Phys. Lett., 74, 2990–2, (1999).Google Scholar
9. Maiorov, M., Wang, J., Baer, D., Lee, H., Belenky, G., Hanson, R., Connolly, J., Garbuzov, D., Proc. SPIE, 3825 (to be published in 1999).Google Scholar
10. Donetsky, D. V., Belenky, G. L., Garbuzov, D. Z., Lee, H., Martinelli, R. U., Taylor, G., Luryi, S., and Connolly, J. C., Electr. Lett., 35, pp. 298299 (1999).Google Scholar
11. Garbuzov, D. Z., Lee, H., York, P., Menna, R., Martinelli, R., DiMarco, L., Narayan, S., Capewell, D., and Connolly, J., Proc. SPIE, 2682, pp. 216, 1996. D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, Appl. Phys. Lett., 69, pp. 2006-2008, (1996).Google Scholar
12. Garbuzov, D., Menna, R., Lee, H., Martinelli, R. U., Connolly, J. C., Xu, L., Forrest, S. R., Conference on InP and Related Compounds, Hyannis, MA, 11 May, 1997, pp.551554.Google Scholar
13. Garbuzov, D. Z., Ovchinnikov, A. V., Pikhtin, N. A., Sokolova, Z. N., Tarasov, I. S., and Khalfin, V. B., Sov. Phys. Semiconduct., 25, pp. 560566, (1991).Google Scholar
14. Barrau, J., Amand, T., Brousseau, M., Simes, R. J., and Goldstein, L., J. Appl. Phys., 71, pp. 57685771, (1992).Google Scholar
15. Choi, K., Walpole, J. N., Turner, G. W., Connors, M. K., Missagia, L. J., Manfra, M. J., J. IEEE Photon. Technol. Lett., 11, pp. 938940, (1998).Google Scholar
16. DeLong, M. C., Mowbray, D. J., Hogg, R. A., Skolnick, M. S., Hopkinson, M., David, J. P. R., Taylor, P. C., Kurtz, Sarah R. and Olson, J. M., J. Appl. Phys., 73, pp. 51635171, {1993).Google Scholar