Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T06:40:11.495Z Has data issue: false hasContentIssue false

Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulus

Published online by Cambridge University Press:  06 October 2020

Jianzhong Zhao
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University, People's Republic of China Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Illinois, USA
Weican Li
Affiliation:
School of Engineering, Brown University, Rhode Island, USA
Xingming Guo
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University, People's Republic of China
Heling Wang*
Affiliation:
Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Illinois, USA
John A. Rogers
Affiliation:
Departments of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery, Northwestern University, Illinois, USA Querrey-Simpson Institute for Bioelectronics, Northwestern University, Illinois, USA
Yonggang Huang
Affiliation:
Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Illinois, USA Querrey-Simpson Institute for Bioelectronics, Northwestern University, Illinois, USA
*
*Corresponding author. Email: [email protected]
Get access

Abstract

Vibration-based methods can be used effectively to characterize the physical properties of biological materials, with an increasing interest focused on the mechanics of individual, living cells. Real-time measurements of cell properties, such as mass and Young's modulus, can yield important insights into many aspects of cell growth and metabolism as well as the interaction of cells with external stimuli (e.g., drugs). Vibrational test structures designed for the study of such cell properties often use fixed configurations and operational modes, with associated limitations in determining multiple characteristics of the cell, simultaneously. Recent development of mechanics-guided techniques for deterministic assembly of three-dimensional (3D) microstructures provides a route to vibrational frameworks that offer tunable configurations, vibration modes, and resonant frequencies. Here we propose a method that exploits such tunable vibrational structures to simultaneously determine the mass and modulus of a single adherent cell, or of other biological materials or small-scale living systems (e.g., organoids), through theoretical modeling and finite element analysis. The idea involves a 3D architecture that supports two different vibrational structures and can be converted from one to the other through application of strain to an elastomeric substrate. Specifically, tailored designs for serpentine ribbons in these systems enable a decoupling of the dependence of the resonant frequencies of the two structures to the cell mass and modulus, with an associated ability to measure these two properties accurately and independently. These same concepts can be scaled to apply to various types of cells, as well as to organoids (3D clusters of cells) and other biological materials with small geometries, across a range of values of mass and modulus. This method could serve as the foundation for microelectromechanical systems capable of monitoring mass and modulus in real time for use in research in biomechanics and dynamic biological processes.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

Cell mass and modulus are important indicators of cell behavior during growth, proliferation, differentiation, and interactions with external stimuli such as drugs and viruses. We propose a method to simultaneously measure cell mass and modulus through the use of the vibrations of tunable three-dimensional (3D) structures formed via a mechanics-guided assembly approach. The method is applicable to various types of cells and other biological materials and small-scale living systems across a wide range of values of mass and modulus. The results may serve as the foundation for microelectromechanical systems capable of monitoring physical aspects of cellular processes in real time.

References

Corbin, E.A., Kong, F., Lim, C.T., King, W.P., Bashir, R., Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab on a Chip 15, 839 (2015).CrossRefGoogle ScholarPubMed
Park, K., Millet, L.J., Kim, N., Li, H., Jin, X., Popescu, G., Aluru, N.R., Hsia, K.J., Bashir, R., Measurement of adherent cell mass and growth. Proc. Natl. Acad. Sci. U.S.A. 107, 20691 (2010).CrossRefGoogle Scholar
Martinez-Martin, D., Flaschner, G., Gaub, B., Martin, S., Newton, R., Beerli, C., Mercer, J., Gerber, C., Muller, D.J., Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 550, 500 (2017).CrossRefGoogle ScholarPubMed
Shaat, M., Abdelkefi, A., Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int. J. Mech. Sci. 101, 280 (2015).CrossRefGoogle Scholar
Park, K., Jang, J., Irimia, D., Sturgis, J., Lee, J., Robinson, J.P., Toner, M., Bashir, R., ‘Living cantilever arrays’ for characterization of mass of single live cells in fluids. Lab on a Chip 8, 1034 (2008).CrossRefGoogle ScholarPubMed
Bryan, A.K., Hecht, V.C., Shen, W., Payer, K., Grover, W.H., Manalis, S.R., Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Lab on a Chip 14, 569 (2014).CrossRefGoogle ScholarPubMed
Rahman, M.H., Ahmad, M.R., Takeuchi, M., Nakajima, M., Hasegawa, Y., Fukuda, T., Single cell mass measurement using drag force inside lab-on-chip microfluidics system. IEEE transactions on nanobioscience 14, 927 (2015).CrossRefGoogle ScholarPubMed
Cermak, N., Olcum, S., Delgado, F.F., Wasserman, S.C., Payer, K.R., Murakami, M.A., Knudsen, S.M., Kimmerling, R.J., Stevens, M.M., Kikuchi, Y., Sandikci, A., Ogawa, M., Agache, V., Baléras, F., Weinstock, D.M., Manalis, S.R., High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol. 34, 1052 (2016).CrossRefGoogle ScholarPubMed
Corbin, E.A., Adeniba, O.O., Ewoldt, R.H., Bashir, R., Dynamic mechanical measurement of the viscoelasticity of single adherent cells. Appl. Phys. Lett. 108, 093701 (2016).CrossRefGoogle Scholar
Kurashina, Y., Hirano, M., Imashiro, C., Totani, K., Komotori, J., Takemura, K., Enzyme-free cell detachment mediated by resonance vibration with temperature modulation. Biotechnol. Bioeng. 114, 2279 (2017).CrossRefGoogle ScholarPubMed
Kurashina, Y., Takemura, K., Friend, J., Miyata, S., Komotori, J., Efficient subculture process for adherent cells by selective collection using cultivation substrate vibration. IEEE Transactions on Biomedical Engineering 64, 580 (2016).Google ScholarPubMed
Bouchaala, A., Nayfeh, A.H., Younis, M.I., Frequency shifts of micro and nano cantilever beam resonators due to added masses. J. Dyn. Sys., Meas., Control 138, 091002 (2016).Google Scholar
Lin, H., Chung, M., Huang, L., An oscillated, self-sensing piezoresistive microcantilever sensor with fast fourier transform analysis for point-of-care blood coagulation monitoring. 2016 IEEE International Conference on Industrial Technology, 640 (2016).CrossRefGoogle Scholar
Lu, X., Hou, L., Zhang, L., Tong, Y., Zhao, G., Cheng, Z.Y., Piezoelectric-excited membrane for liquids viscosity and mass density measurement. Sensor. Actuat. A-Phys. 261, 196 (2017).CrossRefGoogle Scholar
Gil-Santos, E., Ramos, D., Martínez, J., Fernández-Regúlez, M., García, R., Paulo, Á.S., Calleja, M., Tamayo, J., Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotechnol. 5, 641 (2010).CrossRefGoogle ScholarPubMed
Li, M., Tang, H.X., Roukes, M.L., Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2, 114 (2007).CrossRefGoogle ScholarPubMed
Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L., Zeptogram-scale nanomechanical mass sensing. Nano Letters 6, 583 (2006).CrossRefGoogle ScholarPubMed
Jensen, K., Kim, K., Zettl, A., An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3, 533 (2008).CrossRefGoogle ScholarPubMed
Cermak, N., Olcum, S., Delgado, F.F., Wasserman, S.C., Payer, K.R., Murakami, M.A., Knudsen, S.M., Kimmerling, R.J., Stevens, M.M., Kikuchi, Y., Sandikci, A., Ogawa, M., Agache, V., Baléras, F., Weinstock, D.M., Manalis, S.R., High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol 34, 1052 (2016).CrossRefGoogle ScholarPubMed
Sage, E., Sansa, M., Fostner, S., Defoort, M., Gély, M., Naik, A.K., Morel, R., Duraffourg, L., Roukes, M.L., Alava, T., Jourdan, G., Colinet, E., Masselon, C., Brenac, A., Hentz, S., Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nat. Commun. 9, 3283 (2018).CrossRefGoogle ScholarPubMed
Martín-Perez, A., Ramos, D., Gil-Santos, E., García-Lopez, S., Yubero, M.L., Kosaka, P.M., Paulo, A.S., Tamayo, J., Calleja, M., Mechano-optical analysis of single cells with transparent microcapillary resonators. ACS Sensors 4, 3325 (2019).CrossRefGoogle ScholarPubMed
Annalisa, D.P., Villanueva, L.G., Suspended micro/nano channel resonators: a review. J. Micromech. Microeng 30, 4 (2020).Google Scholar
Malvar, O., Ruz, J.J., Kosaka, P.M., Domínguez, C.M., Gil-Santos, E., Calleja, M., Tamayo, J., Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators. Nat. Commun. 7, 13452 (2016).CrossRefGoogle ScholarPubMed
Narayan, R., Encyclopedia of Biomedical Engineering (Elsevier, New York, 2018).Google Scholar
Lin, G., Zhang, X., Ren, J., Pang, Z., Wang, C., Xu, N., Xi, R., Integrin signaling is required for maintenance and proliferation of intestinal stem cells in Drosophila. Developmental Biology 377, 177 (2013).CrossRefGoogle ScholarPubMed
Kang, J.H., Miettinen, T.P., Chen, L., Olcum, S., Katsikis, G., Doyle, P.S., Manalis, S.R., Noninvasive monitoring of single-cell mechanics by acoustic scattering. Nat. Methods 16, 3 (2019).Google ScholarPubMed
Fu, H., Nan, K., Bai, W., Huang, W., Bai, K., Lu, L., Zhou, C., Liu, Y., Liu, F., Wang, J., Han, M., Yan, Z., Luan, H., Zhang, Y., Zhang, Y., Zhao, J., Cheng, X., Li, M., Lee, J.W., Liu, Y., Fang, D., Li, X., Huang, Y., Zhang, Y., Rogers, J.A., Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 17, 268 (2018).CrossRefGoogle ScholarPubMed
Yan, Z., Zhang, F., Liu, F., Han, M., Ou, D., Liu, Y., Lin, Q., Guo, X., Fu, H., Xie, Z., Gao, M., Huang, Y., Kim, J., Qiu, Y., Nan, K., Kim, J., Gutruf, P., Luo, H., Zhao, A., Hwang, K., Huang, Y., Zhang, Y., Rogers, J.A., Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2, e1601014 (2016).CrossRefGoogle ScholarPubMed
Wang, X., Guo, X., Ye, J., Zheng, N., Kohli, P., Choi, D., Zhang, Y., Xie, Z., Zhang, Q., Luan, H., Nan, K., Kim, B.H., Xu, Y., Shan, X., Bai, W., Sun, R., Wang, Z., Jang, H., Zhang, F., Ma, Y., Xu, Z., Feng, X., Xie, T., Huang, Y., Zhang, Y., Rogers, J.A., Freestanding 3D mesostructures, functional devices, and shape-programmable systems based on mechanically induced assembly with shape memory polymers. Adv. Mater. 31, 1805615 (2019).CrossRefGoogle ScholarPubMed
Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., Lewis, J.A., Biomimetic 4D printing. Nat. Mater. 15, 413 (2016).CrossRefGoogle ScholarPubMed
Kotikian, A.1, McMahan, C., Davidson, E.C., Muhammad, J.M., Weeks, R.D., Daraio, C., Lewi, J.A., Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robotics 4, eaax7044 (2019).CrossRefGoogle Scholar
Liao, X., Xiao, J., Ni, Y., Li, C., Chen, X., Self-assembly of islands on spherical substrates by surface instability. ACS Nano 11, 2611 (2017).CrossRefGoogle ScholarPubMed
Boley, J.W., van Rees, W.M., Lissandrello, C., Horenstein, M.N., Truby, R.L., Kotikian, A., Lewis, J.A., Mahadevan, L., Shape-shifting structured lattices via multimaterial 4D printing. Proc. Natl. Acad. Sci. U.S.A. 116, 20856 (2019).CrossRefGoogle ScholarPubMed
Xu, S., Yan, Z., Jang, K.I., Huang, W., Fu, H., Kim, J., Wei, Z., Flavin, M., McCracken, J., Wang, R., Badea, A., Liu, Y., Xiao, D., Zhou, G., Lee, J., Chung, H.U., Cheng, H., Ren, W., Banks, A., Li, X., Paik, U., Nuzzo, R.G., Huang, Y., Zhang, Y., Rogers, J.A., Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154 (2015).CrossRefGoogle ScholarPubMed
Zhang, Y., Zhang, F., Yan, Z., Ma, Q., Li, X., Huang, Y., Rogers, J.A., Printing, folding and assembly methods for forming 3d mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).CrossRefGoogle Scholar
Ning, X., Wang, H., Yu, X., Soares, J., Yan, Z., Nan, K., Velarde, G., Xue, Y., Sun, R., Dong, Q., Luan, H., Lee, C.M., Chempakasseril, A., Han, M., Wang, Y., Li, L., Huang, Y., Zhang, Y., Rogers, J.A., Three-dimensional multiscale, multistable, and geometrically diverse microstructures with tunable vibrational dynamics assembled by compressive buckling. Adv. Funct. Mater. 27, 1605914 (2017).CrossRefGoogle ScholarPubMed
Wang, H., Ning, X., Li, H., Luan, H., Xue, Y., Yu, X., Fan, Z., Li, L., Rogers, J.A., Zhang, Y., Huang, Y., Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. J. Mech. Phys. Solids 112, 187 (2018).CrossRefGoogle ScholarPubMed
Li, H., Wang, X., Zhu, F., Ning, X., Wang, H., Rogers, J.A., Zhang, Y., Huang, Y., Viscoelastic characteristics of mechanically assembled three-dimensional structures formed by compressive buckling. J. Appl. Mech. 85, 121002 (2018).CrossRefGoogle Scholar
Kreider, W., Nayfeh, A.H., Experimental investigation of single-mode responses in a fixed-fixed buckled beam. Nonlinear Dynamics 15, 155 (1998).CrossRefGoogle Scholar
Min, G.B., Eisley, J.G., Nonlinear vibration of buckled beams. J. Eng. Ind. 94, 637 (1972).CrossRefGoogle Scholar
Ning, X., Yu, X., Wang, H., Sun, R., Corman, R.E., Li, H., Lee, C.M., Xue, Y., Chempakasseril, A., Yao, Y., Zhang, Z., Luan, H., Wang, Z., Xia, W., Feng, X., Ewoldt, R.H., Huang, Y., Zhang, Y., Rogers, J.A., Mechanically active materials in three-dimensional mesostructures. Sci. Adv. 4, eaat8313 (2018).CrossRefGoogle ScholarPubMed
Jang, K.I., Li, K., Chung, H.U., Xu, S., Jung, H.N., Yang, Y., Kwak, J.W., Jung, H.H., Song, J., Yang, C., Wang, A., Liu, Z., Lee, J.Y., Kim, B.H., Kim, J.H., Lee, J., Yu, Y., Bu Kim, J., Jang, H., Yu, K.J., Kim, J., Lee, J.W., Jeong, J.W., Song, Y.M., Huang, Y., Zhang, Y., Rogers, J.A., Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 8, 1 (2017).CrossRefGoogle ScholarPubMed
Zhang, F., Liu, F., Zhang, Y., Analyses of mechanically-assembled 3D spiral mesostructures with applications as tunable inductors. Science China Technological Sciences 62, 243 (2019).CrossRefGoogle Scholar
Kim, B.H., Liu, F., Yu, Y., Jang, H., Xie, Z., Li, K., Lee, J., Jeong, J.Y., Ryu, A., Lee, Y., Kim, D.H., Wang, X., Lee, K., Lee, J.Y., Won, S.M., Oh, N., Kim, J., Kim, J.Y., Jeong, S.J., Jang, K.I., Lee, S., Huang, Y., Zhang, Y., Rogers, J.A., Mechanically guided post-assembly of 3D electronic systems. Adv. Funct. Mater. 28, 1803149 (2018).CrossRefGoogle Scholar
Yan, Z., Han, M., Shi, Y., Badea, A., Yang, Y., Kulkarni, A., Hanson, E., Kandel, M.E., Wen, X., Zhang, F., Luo, Y., Lin, Q., Zhang, H., Guo, X., Huang, Y., Nan, K., Jia, S., Oraham, A.W., Mevis, M.B., Lim, J., Guo, X., Gao, M., Ryu, W., Yu, K.J., Nicolau, B.G., Petronico, A., Rubakhin, S.S., Lou, J., Ajayan, P.M., Thornton, K., Popescu, G., Fang, D., Sweedler, J.V., Braun, P.V., Zhang, H., Nuzzo, R.G., Huang, Y., Zhang, Y., Rogers, J.A., Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl. Acad. Sci. U.S.A. 114, E9455 (2017).CrossRefGoogle ScholarPubMed
Nan, K., Kang, S.D., Li, K., Yu, K.J., Zhu, F., Wang, J., Dunn, A.C., Zhou, C., Xie, Z., Agne, M.T., Wang, H., Luan, H., Zhang, Y., Huang, Y., Snyder, G.J., Rogers, J.A., Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 4, Eaau5849 (2018).CrossRefGoogle ScholarPubMed
Won, S.M., Wang, H., Kim, B.H., Lee, K., Jang, H., Kwon, K., Han, M., Crawford, K.E., Li, H., Lee, Y., Lee, Y., Yuan, X., Kim, S.B., Oh, Y.S., Jang, W.J., Lee, J.Y., Han, S., Kim, J., Wang, X., Xie, Z., Zhang, Y., Huang, Y., Rogers, J.A., Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 13, 10972 (2019).CrossRefGoogle ScholarPubMed
Ning, X., Wang, X., Zhang, Y., Yu, X., Choi, D., Zheng, N., Kim, D.S., Huang, Y., Zhang, Y., Rogers, J.A., Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review. Adv. Mater. Interfaces 5, 1800284 (2018).CrossRefGoogle Scholar
Guo, X., Xu, Z., Zhang, F., Wang, X., Zi, Y., Rogers, J.A., Huang, Y., Zhang, Y., Reprogrammable 3D mesostructures through compressive buckling of thin films with prestrained shape memory polymer. Acta Mechanica Solida Sinica 31, 589 (2018).CrossRefGoogle Scholar
Li, K., Wu, W., Jiang, Z., Cai, S., Voltage-induced wrinkling in a constrained annular dielectric elastomer film. J. Appl. Mech. 85, 011007 (2018).CrossRefGoogle Scholar
Mao, G., Wu, L., Liang, X., Qu, S., Morphology of voltage-triggered ordered wrinkles of a dielectric elastomer sheet. J. Appl. Mech. 84, 111005 (2017).CrossRefGoogle Scholar
Han, M., Wang, H., Yang, Y., Liang, C., Bai, W., Yan, Z., Li, H., Xue, Y., Wang, X., Akar, B., Zhao, H., Luan, H., Lim, J., Kandela, I., Ameer, G.A., Zhang, Y., Huang, Y., Rogers, J.A., Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electronics 2, 26 (2019).Google Scholar
Li, S., Han, M., Rogers, J.A., Zhang, Y., Huang, Y., Wang, H., Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly. J. Mech. Phys. Solids 125, 736 (2019).CrossRefGoogle Scholar
Ren, J., Yu, S., Gao, N., Zou, Q., Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: Rate-dependent elastic modulus of live cells. Phys. Rev. E 88, 5 (2013).Google Scholar
Nan, K., Wang, H., Ning, X., Miller, K.A., Wei, C., Liu, Y., Li, H., Xue, Y., Xie, Z., Luan, H., Zhang, Y., Huang, Y., Rogers, J.A., Braun, P.V., Soft three-dimensional microscale vibratory platforms for characterization of nano-thin polymer films. ACS Nano 13, 449 (2018).CrossRefGoogle ScholarPubMed
Karzbrun, E., Kshirsagar, A., Cohen, S.R., Hanna, J.H., Reiner, O., Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515 (2018).CrossRefGoogle ScholarPubMed
Clevers, H., Modeling development and disease with organoids. Cell 165, 1586 (2016).CrossRefGoogle ScholarPubMed
Bhaduri, A., Andrews, M.G., Leon, W.M., Jung, D., Shin, D., Allen, D., Jung, D., Schmunk, G., Haeussler, M., Salma, J., Pollen, A.A., Nowakowski, T.J., Kriegstein, A.R., Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142 (2020).CrossRefGoogle ScholarPubMed
Sachs, N., Papaspyropoulos, A., Zomer-van Ommen, D.D., Heo, I., Böttinger, L., Klay, D., Weeber, F., Huelsz-Prince, G., Iakobachvili, N., Amatngalim, G.D., Ligt, J., Hoeck, A., Proost, N., Viveen, M.C., Lyubimova, A., Teeven, L., Derakhshan, S., Korving, J., Begthel, H., Dekkers, J.F., Kumawat, K., Ramos, E., Oosterhout, M.FM., Offerhaus, G.J., Wiener, D.J., Olimpio, E.P., Dijkstra, K.K., Smit, E.F., Linden, M., Jaksani, S., Ven, M., Jonkers, J., Rios, A.C., Voest, E.E., Moorsel, C.HM., Ent, C.K., Cuppen, E., Oudenaarden, A., Coenjaerts, F.E., Meyaard, L., Bont, L.J., Peters, P.J., Tans, S.J., Zon, J.S., Boj, S.F., Vries, R.G., Beekman, J.M., Clevers, H., Long-term expanding human airway organoids for disease modeling. The EMBO Journal 38, e100300 (2019).CrossRefGoogle ScholarPubMed
Guimarães, C.F., Gasperini, L., Marques, A.P., Reis, R.L., The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351 (2020).CrossRefGoogle Scholar
Hu, H., Gehart, H., Artegiani, B., Löpez-Iglesias, C., Dekkers, F., Basak, O., Es, J.v., Lopes, S.M.C.d.S., Begthel, H., Korving, J., Born, M.v.d., Zou, C., Quirk, C., Chiriboga, L., Rice, C.M, Ma, S., Rios, A., Peters, P.J., Jong, Y.P.d., Clevers, H., Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 6 (2018).CrossRefGoogle ScholarPubMed
Ronaldson-Bouchard, K., Ma, S.P., Yeager, K., Chen, T., Song, L., Sirabella, D., Morikawa, K., Teles, D., Yazawa, M., Vunjak-Novakovic, G., Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 7700 (2018).CrossRefGoogle ScholarPubMed
Rigato, A., Miyagi, A., Scheuring, S., Rico, F., High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat. Phys. 13, 8 (2017).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Zhao et al. supplementary material

Figures S1-S3

Download Zhao et al. supplementary material(PDF)
PDF 504.5 KB