Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T23:14:06.701Z Has data issue: false hasContentIssue false

Solution Deposition of Ferroelectric Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Solution deposition has been used by almost every electroceramic research-and-development organization throughout the world to evaluate thin films. Ferrite, high-temperature-superconductor, dielectric, and antireflection coatings are among the electroceramics for which solution deposition has had a significant impact. Lithium niobate, lithium tantalate, potassium niobate, lead scandium tantalate, lead magnesium niobate, and bismuth strontium tantalate are among the ferroelectric thin films processed by solution deposition. However, lead zir-conate titanate (PZT) thin films have received the most intensive study and will be emphasized in this article.

Solution deposition facilitates stoichiometric control of complex mixed oxides better than other techniques such as sputter deposition and metalorganic chemical vapor deposition (MOCVD). Solution deposition is a fast, cost-efficient method to survey extensive ranges of film composition. Further it is a process compatible with many semiconductor-fabrication technologies, and it may be the deposition method of choice for applications that do not require conformal depositions and that have device dimensions of 2 μm or greater. Specific applications for which solution deposition is commercially viable include decoupling capacitors, uncooled pyroelectric infrared detectors, piezoelectric micromotors, and chemical microsensors based on surface-acoustic-wave technology. Reviews of some of the more fundamental aspects of solution-deposition processing may be found in the scientific literature.

Type
Electroceramic Thin Films Part I: Processing
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hirano, S., Yogo, T., Kikuta, K., Urahata, H., Isobe, Y., Mosrshita, T., Ogiso, K., and Ito, Y., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, 1992) p. 331.Google Scholar
2.Baude, P.F., Ye, C., and Polla, D.L., in Ferroelectric Thin Films III, edited by Myers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, 1992) p. 139.Google Scholar
3.Tuttle, B.A., Bunker, B.C., Lamppa, D.L., Tissot, R.G., and Yio, Y.L., Ceram. Trans. 11 (1990) p. 329.Google Scholar
4.Patel, A., Shorrocks, N.M., and Whatmore, R.W., in Ferroelectric Thin Films II, edited by Kingon, A.I., Myers, E.R., and Tuttle, B.A. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, 1992) p. 67.Google Scholar
5.Francis, L.F. and Payne, D.A., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, 1990) p. 173.Google Scholar
6.Minara, T., Watanabe, H., and Araujo, C.A., Jpn. J. Appl. Phys. 33 (1994) p. 3996.Google Scholar
7.Francis, L.F., in Intermetallic and Ceramic Coatings, edited by Dahotre, N. and Sudarshan, T.S. (Marcel Dekker, Inc., New York, 1996).Google Scholar
8.Brinker, C.J., Hurd, A.J., Frye, G.C., Schunk, P.R., and Ashley, C.S., in Chemical Processing of Advanced Materials, edited by Hench, L.L. and West, J.K. (John Wiley & Sons, Inc., New York, 1992) p. 395.Google Scholar
9.Budd, K.D., Dey, S.K., and Payne, D.A., Br. Ceram. Soc. Proc. 36 (1985) p. 107.Google Scholar
10.Budd, K.D., Dey, S.K., and Payne, D.A., IEEE Trans. UFFC 35 (1) (1988) p. 80.Google Scholar
11.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64 (5) (1988) p. 2717.CrossRefGoogle Scholar
12.Schwartz, R.W., Boyle, T.J., Lockwood, S.J., Sinclair, M.B., Dimos, D., and Buchheit, C.D., Int. Ferroelectrics 7 (1995) p. 259.CrossRefGoogle Scholar
13.Vest, R.W. and Xu, J., Ferroelectrics 93 (1989) p. 21.CrossRefGoogle Scholar
14.Haertling, G.H., Ferroelectrics 119 (1991) p. 51.CrossRefGoogle Scholar
15. See for example, Ferroelectric Thin Films III, edited by Myers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, 1992); Ferroelectric Thin Films IV, edited by B.A. Tuttle, S.B. Desu, R. Ramesh, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, 1995).Google Scholar
16.Philips, N.J., Calzada, M.L., and Milne, S.J., J. Non-Cryst. Solids 147–148 (1992) p. 285.CrossRefGoogle Scholar
17.Assink, R.A. and Schwartz, R.W., Chem. Mater. 5 (4) (1993) p. 511.CrossRefGoogle Scholar
18.Schwartz, R.W., Voigt, J.A., Buchheit, C.D., and Boyle, T.J., in Ferroic Materials Design, Properties and Characterization, edited by Bhalla, A.S., Nair, K.M., Lloyd, I.K., Yanagida, H., and Payne, D.A. (Ceramic Transactions, vol. 43, Westerville, OH 1994) p. 145.Google Scholar
19.Schwartz, R.W., Voigt, J.A., Boyle, T.J., Christenson, T.A., and Buchheit, C.D., Ceram. Eng. &. Sci. Proc. 16 (5) (1995) p. 1045.CrossRefGoogle Scholar
20.Reaney, I.M., Brooks, K., Klissurska, R., Pawlaczyk, C., and Setter, N., J Am. Ceram. Soc. 77 (5) (1994) p. 1209.CrossRefGoogle Scholar
21.Tuttle, B.A., Headley, T.J., Bunker, B.C., Schwartz, R.W., Zender, T., Hernandez, C.L., Goodnow, D.C., Tissot, R.J., Michael, J., and Carim, A.H., J. Mater. Res. 7 (7) (1992) p. 1876.CrossRefGoogle Scholar
22.Hsueh, C.C. and MeCartney, M.L., J. Mater. Res. 6 (6) (1991) p. 2208.CrossRefGoogle Scholar
23.Lakeman, C.D.E., Xu, Zhengkui, and Payne, D.A., J. Mater. Res. 10 (8) (1995) p. 2042.CrossRefGoogle Scholar
24.Fox, G.R. and Krupanidhi, S.B., J. Mater. Res. 9 (3) (1994) p. 699.CrossRefGoogle Scholar
25.Griswold, E.M., Weaver, D.L., Calder, I.D., and Sayer, M., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, 1995) p. 389.Google Scholar
26.Voigt, J.A., Tuttle, B.A., Headley, T.J., Eatough, M.O., Lamppa, D.L., and Goodnow, D., in Ferroelectric Thin Films III, edited by Myers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, 1992) p. 15.Google Scholar
27.Kwok, C. and Desu, S., J. Mater. Res. 9 (1994) p. 1728.CrossRefGoogle Scholar
28.Voigt, J.A., Tuttle, B.A., Headley, T.J., and Lamppa, D.L., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, 1995) p. 395.Google Scholar
29.Wilkinson, A.P., Speck, J.S., Ceetham, A.K., Natarajan, S., and Thomas, J.M., Chem. Mater. 6 (6) (1994) p. 750.CrossRefGoogle Scholar
30.Kushida, K., Udayakumar, K.R., Krupanidhi, S.B. and Cross, L.E., J. Am. Ceram. Soc. 76 (5) (1993) p. 1345.CrossRefGoogle Scholar
31.Chen, S.Y. and Chen, I-W., J. Am. Ceram. Soc. 77 (9) (1993).Google Scholar
32.Raymond, M.V. and Smyth, D.M., Ferroelectrics 144 (1993) p. 129.CrossRefGoogle Scholar
33.Tuttle, B.A., Voigt, J.A., Goodnow, D.C., Lamppa, D.L., Eatough, M.O., Zender, G., Nasby, R.D., and Rodgers, S.M., J. Am. Ceram. Soc. 76 (6) (1993) p. 1537.CrossRefGoogle Scholar
34.Barlingay, C.K. and Dey, S.K., Appl. Phys. Lett. 61 (1992) p. 1278.CrossRefGoogle Scholar
35.Tuttle, B.A., Garino, T.J., Voigt, J.A., Headley, T.J., Dimos, D., and Eatough, M.O., in Science and Technology of Electroceramic Thin Films, edited by Auciello, O. and Waser, R. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995) p. 117.CrossRefGoogle Scholar
36.Spierings, G.A.C.M., Dormans, G.J.M., Moors, W.G.J., Ulenaers, M.J.E., and Larsen, P.K., Proc. 9th IEEE Int. Symp. Appl. Ferroelectrics (1994) p. 29.CrossRefGoogle Scholar