Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T10:42:17.949Z Has data issue: false hasContentIssue false

Membrane Electromechanics in Biology, with a Focus on Hearing

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Cells are ion conductive gels surrounded by a ∼5-nm-thick insulating membrane, and molecular ionic pumps in the membrane establish an internal potential of approximately −90 mV. This electrical energy store is used for high-speed communication in nerve and muscle and other cells. Nature also has used this electric field for high-speed motor activity, most notably in the ear, where transduction and detection can function as high as 120 kHz. In the ear, there are two sets of sensory cells: the “inner hair cells” that generate an electrical output to the nervous system and the more numerous “outer hair cells” that use electromotility to counteract viscosity and thus sharpen resonance to improve frequency resolution. Nature, in a remarkable exhibition of nanomechanics, has made out of soft, aqueous materials a microphone and high-speed decoder capable of functioning at 120 kHz, limited only by thermal noise. Both physics and biology are only now becoming aware of the material properties of biomembranes and their ability to perform work and sense the environment. We anticipate new examples of this biopiezoelectricity will be forthcoming.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hodgkin, A.L., Huxley, A.F., J. Physiol. (London) 117, 500 (1952).CrossRefGoogle Scholar
2Catterall, W.A., Curr. Opin. Cell Biol. 6, 607 (1994).CrossRefGoogle Scholar
3Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B.T., MacKinnon, R., Nature 423, 33 (2003).CrossRefGoogle Scholar
4Helfrich, W., Z. Naturforsch., C: Biosci. 28, 693 (1973).CrossRefGoogle Scholar
5Cohen, L.B., Keynes, R.D., Hille, B., Nature 218, 438 (1968).CrossRefGoogle Scholar
6Iwasa, K., Tasaki, I., Biochem. Biophys. Res. Commun. 95, 1328 (1980).CrossRefGoogle Scholar
7Brownell, W.E., Bader, C.R., Bertrand, D., de Ribaupierre, Y., Science 227, 194 (1985).CrossRefGoogle Scholar
8Ludwig, J., Oliver, D., Frank, G., Klocker, N., Gummer, A.W., Fakler, B., Proc. Nat. Acad. Sci. U.S.A. 98, 4178 (2001).CrossRefGoogle Scholar
9Mosbacher, J., Langer, M., Horber, J.K., Sachs, F., J. Gen. Physiol. 111, 65 (1998).CrossRefGoogle Scholar
10Zhang, P.C., Keleshian, A.M., Sachs, F., Nature 413, 428 (2001).CrossRefGoogle Scholar
11Zheng, J., Shen, W., He, D.Z., Long, K.B., Madison, L.D., Dallos, P., Nature 405, 149 (2000).CrossRefGoogle Scholar
12Petrov, A.G., Sokolov, V.S., Eur. Biophys. J. 13, 139 (1986).CrossRefGoogle Scholar
13Todorov, A.T., Petrov, A.G., Fendler, J.H., J. Phys. Chem. 98, 3076 (1994).CrossRefGoogle Scholar
14Harden, J., Diorio, N., Petrov, A.G., Jakli, A., Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 79, 011701 (2009).CrossRefGoogle Scholar
15Meyer, R.B., Phys. Rev. Lett. 22, 918 (1969).CrossRefGoogle Scholar
16De Gennes, P.G., The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).Google Scholar
17Petrov, A.G., The Lyotropic State of Matter: Molecular Physics and Living Matter Physics (Gordon and Breach Science Publishers, The Netherlands, 1999).CrossRefGoogle Scholar
18Petrov, A.G., Sachs, F., Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 65, 021905 (2002).CrossRefGoogle Scholar
19Green, D.E., Ji, S., Brucker, R.F., J. Bioenerg. 4, 253 (1973).CrossRefGoogle Scholar
20Beyder, A., Sachs, F., PNAS 106, 6626 (2009).CrossRefGoogle Scholar
21Dong, X.X., Ospeck, M., Iwasa, K.H., Biophys. J. 82, 1254 (2002).CrossRefGoogle Scholar
22Rabbitt, R.D., Ayliffe, H.E., Christensen, D., Pamarthy, K., Durney, C., Clifford, S., Brownell, W.E., Biophys. J. 88, 2257 (2005).CrossRefGoogle Scholar
23Spector, A.A., Brownell, W.E., Popel, A.S., J. Acoust. Soc. Am. 113, 453 (2003).CrossRefGoogle Scholar
24Weitzel, E.K., Tasker, R., Brownell, W.E., J. Acoust. Soc. Am. 114, 1462 (2003).CrossRefGoogle Scholar
25Rajagopalan, L., Greeson, J.N., Xia, A., Liu, H., Sturm, A., Raphael, R.M., Davidson, A.L., Oghalai, J.S., Pereira, F.A., Brownell, W.E., J. Neurosci. 26 12727 (2006).CrossRefGoogle Scholar
26Rajagopalan, L., Pereira, F.A., Lichtarge, O., Brownell, W.E., Methods Mol. Biol. 493, 287 (2009).CrossRefGoogle Scholar
27Zhang, R., Qian, F., Rajagopalan, L., Pereira, F.A., Brownell, W.E., Anvari, B., Biophys. J. 93, L07 (2007).CrossRefGoogle Scholar
28Dallos, P., Fakler, B., Nat. Rev. Mol. Cell Biol. 3, 104 (2002).CrossRefGoogle Scholar
29Marsh, D., Biochim Biophys. Acta 1778, 1545 (2008).CrossRefGoogle Scholar
30Rajagopalan, L., Greeson, J.N., Xia, A., Liu, H., Sturm, A., Raphael, R.M., Davidson, A.L., Oghalai, J.S., Pereira, F.A., Brownell, W.E., J. Biol. Chem. 282, 36659 (2007).CrossRefGoogle Scholar
31Sfondouris, J., Rajagopalan, L., Pereira, F.A., Brownell, W.E., J. Biol. Chem. 283, 22473 (2008).CrossRefGoogle Scholar
32Borjesson, S.I., Hammarstrom, S., Elinder, F., Biophys. J. 95, 2242 (2008).CrossRefGoogle Scholar
33Qian, F., Ermilov, S., Murdock, D., Brownell, W.E., Anvari, B., Rev. Sci. Instrum. 75, 2937 (2004).CrossRefGoogle Scholar
34Rustom, A., Saffrich, R., Markovic, I., Walther, P., Gerdes, H.H., Science 303, 1007 (2004).CrossRefGoogle Scholar
35Chanda, B., Asamoah, O.K., Blunck, R., Roux, B., Bezanilla, F., Nature 436, 852 (2005).CrossRefGoogle Scholar
36Bezanilla, F., Physiol. Rev. 80, 555 (2000).CrossRefGoogle Scholar
37Schmidt, D., MacKinnon, R., Proc. Nat. Acad. Sci. U.S.A. 105, 19276 (2008).CrossRefGoogle Scholar
38Calabrese, B., Tabarean, I.V., Juranka, P., Morris, C.E., Biophys. J. 83, 2560 (2002).CrossRefGoogle Scholar
39Gu, C.X., Juranka, P.F., Morris, C.E., Biophys. J. 80, 2678 (2001).CrossRefGoogle Scholar
40Tabarean, I.V., Morris, C.E., Biophys. J. 82, 2982 (2002).CrossRefGoogle Scholar
41Dowhan, W., Bogdanov, M., Mileykowskaya, E., in Biochemistry of Lipids, Lipoproteins and Membranes, Vance, D.E., Vance, J.E., Eds. (Elsevier, Cambridge, 2008), pp. 137.Google Scholar
42Besch, S., Snyder, K.V., Zhang, R.C., Sachs, F., Cell Biochem. Biophys. 39, 195 (2003).CrossRefGoogle Scholar
43Brownell, W.E., Oghalai, J.S., in Ballenger's Otorhinolaryngology Head and Neck Surgery, Snow, J.B. Jr, Wackym, P.A., Eds. (BC Decker Inc, Philadelphia, 2009), vol. 17, pp. 101106.Google Scholar
44Brownell, W.E., Volta Rev. 99, 9 (1999).Google Scholar
45Brownell, W.E., in Hair Cell Micromechanics and Otoacoustic Emissions, Berlin, C.I., Hood, L.J., Ricci, A., Eds. (Delmar Learning, New Jersey, 2002), pp. 2545.Google Scholar
46Oghalai, J.S., Zhao, H.B., Kutz, J.W., Brownell, W.E., Science 287, 658 (2000).CrossRefGoogle Scholar