Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T15:35:26.414Z Has data issue: false hasContentIssue false

Mechanisms of selective ion transport and salt rejection in carbon nanostructures

Published online by Cambridge University Press:  12 April 2017

Ben Corry*
Affiliation:
Research School of Biology, The Australian National University, Australia; [email protected]
Get access

Abstract

Carbon nanostructures, especially carbon nanotubes and graphene nanopores, have been suggested for use in a wide range of purification and separation applications, from the desalination of seawater to the separation of liquids and gases. However, achieving the required high degree of selectivity among the molecules passing through the pores while maintaining rapid transport is a difficult challenge. Here, we examine the physical mechanisms by which nanopores distinguish between small ions and reject salts while passing water, as examples of how selectivity and purification can be achieved. The simple principles described can be utilized to design novel nanoporous materials for the separation of a wide range of gases, liquids, and solutes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O., Science 312, 1034 (2006).CrossRefGoogle Scholar
Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438, 44 (2005).CrossRefGoogle Scholar
Skoulidas, A.I., Ackerman, D.M., Johnson, J.K., Sholl, D.S., Phys. Rev. Lett. 89, 185901 (2002).Google Scholar
Majumder, M., Chopra, N., Hinds, B.J., ACS Nano 5, 3867 (2011).Google Scholar
Kumar, S., Srivastava, S., Vijay, Y.K., Int. J. Hydrogen Energy 37, 3914 (2012).Google Scholar
Koenig, S.P., Wang, L., Pellegrino, J., Bunch, J.S., Nat. Nanotechnol. 7, 728 (2012).Google Scholar
Zhang, L., Zhao, B., Wang, X., Liang, Y., Qiu, H., Zheng, G., Yang, J., Carbon 66, 11 (2014).Google Scholar
Wu, J., Gerstandt, K., Zhang, H., Liu, J., Hinds, B.J., Nat. Nanotechnol. 7, 133 (2012).CrossRefGoogle Scholar
Choi, W., Ulissi, Z.W., Shimizu, S.F.E., Bellisario, D.O., Ellison, M.D., Strano, M.S., Nat. Commun. 4, 2397 (2013).Google Scholar
Fornasiero, F., In, J.B., Kim, S., Park, H.G., Wang, Y., Grigoropoulos, C.P., Noy, A., Bakajin, O., Langmuir 26, 14848 (2010).CrossRefGoogle Scholar
Fornasiero, F., Park, H.G., Holt, J.K., Stadermann, M., Grigoropoulos, C.P., Noy, A., Bakajin, O., Proc. Natl. Acad. Sci. U.S.A. 105, 17250 (2008).Google Scholar
Huang, H., Song, Z., Wei, N., Shi, L., Mao, Y., Ying, Y., Sun, L., Nat. Commun. 4, 1 (2013).Google Scholar
Hummer, G., Rasaiah, J.C., Noworyta, J.P., Nature 414, 188 (2001).CrossRefGoogle Scholar
Corry, B., J. Phys. Chem. B 112, 1427 (2008).Google Scholar
Song, C., Corry, B., J. Phys. Chem. B 113, 7642 (2009).Google Scholar
Peter, C., Hummer, G., Biophys. J. 89, 2222 (2005).Google Scholar
Thomas, M., Corry, B., Philos. Trans. R. Soc. Lond. A 374, 20150020 (2016).Google Scholar
Corry, B., PeerJ 1, e16 (2013).Google Scholar
He, Z., Zhou, J., Lu, X., Corry, B., J. Phys. Chem. C 117, 11412 (2013).Google Scholar
Cohen-Tanugi, D., Grossman, J.C., Nano Lett. 12, 3602 (2012).CrossRefGoogle Scholar
Corry, B., Energy Environ. Sci. 4, 751 (2011).Google Scholar
Hughes, Z.E., Shearer, C.J., Shapter, J., Gale, J.D., J. Phys. Chem. C 116, 24943 (2012).Google Scholar
Chan, W.-F., Chen, H.-Y., Surapathi, A., Taylor, M.G., Shao, X., Marand, E., Johnson, J.K., ACS Nano 7, 5308 (2013).Google Scholar
Sint, K., Wang, B.Y., Kral, P., J. Am. Chem. Soc. 131, 9600 (2009).Google Scholar
Richards, L.A., Richards, B.S., Corry, B., Schäfer, A.I., Environ. Sci. Technol. 47, 1968 (2013).Google Scholar
Richards, L.A., Schäfer, A.I., Richards, B.S., Corry, B., Small 8, 1701 (2012).CrossRefGoogle Scholar
Richards, L.A., Schäfer, A.I., Richards, B.S., Corry, B., Phys. Chem. Chem. Phys. 14, 11633 (2012).Google Scholar
Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., Golovchenko, J.A., Nature 467, 190 (2010).Google Scholar
Jain, T., Rasera, B.C., Guerrero, R.J.S., Boutilier, M.S.H., O’Hern, S.C., Idrobo, J.-C., Karnik, R., Nat. Nanotechnol. 10, 1 (2015).Google Scholar
Rollings, R.C., Kuan, A.T., Golovchenko, J.A., Nat. Commun. 7, 11408 (2016).Google Scholar
Majumder, M., Chopra, N., Hinds, B.J., J. Am. Chem. Soc. 127, 9062 (2005).Google Scholar
Majumder, M., Corry, B., Chem. Commun. 47, 7683 (2011).Google Scholar
Majumder, M., Zhan, X., Andrews, R., Hinds, B.J., Langmuir 23, 8624 (2007).Google Scholar
Lemasurier, M., Heginbotham, L., Miller, C., J. Gen. Physiol. 118, 303 (2001).Google Scholar
Gong, X., Li, J., Xu, K., Wang, J., Yang, H., J. Am. Chem. Soc. 132, 1873 (2010).Google Scholar
He, Z., Zhou, J., Lu, X., Corry, B., ACS Nano 7, 10148 (2013).Google Scholar
Payandeh, J., Scheuer, T., Zheng, N., Catterall, W.A., Nature 475, 353 (2011).CrossRefGoogle Scholar
Kang, Y., Zhang, Z., Shi, H., Zhang, J., Liang, L., Wang, Q., Agren, H., Tu, Y., Nanoscale 6, 10666 (2014).Google Scholar