Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T06:59:16.088Z Has data issue: false hasContentIssue false

Lessons from Nature—Biomimetic Approaches to Minerals with Complex Structures

Published online by Cambridge University Press:  31 January 2011

Nico A.J.M. Sommerdijk
Affiliation:
Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 515, 5600 MB Eindhoven, The Netherlands; tel. 31-40-247-5870; and e-mail [email protected].
Helmut Cölfen
Affiliation:
Max Planck Institute of Colloids and Interfaces, Colloid Chemistry, Research Campus Golm, Am Mühlenberg, D-14424 Potsdam, Germany; tel. 49-331-567-9513; and e-mail [email protected].
Get access

Abstract

In biology, organic-inorganic hybrid materials are used for several purposes, in particular, for protection and mechanical support. These materials are generally optimized for their function through precise control over the structure, size, shape, and assembly of the component parts and can be superior to many synthetic materials. The shapes and forms of minerals encountered in nature strongly contrast with those that are generally formed in a synthetic environment. According to current understanding, this is achieved through different modes of control: their shape can be controlled by restricting their growth to a confined space or by influencing their preferred direction of growth; in addition, for crystalline materials, polymorph selection and oriented nucleation are achieved through specific interactions between a template or additive and the developing nucleus. Also, controlled arrangement of nanoparticles into superstructures can lead to a complex structure. The understanding and, ultimately, the mimicking of these processes will provide new synthetic routes to specialized organic-inorganic hybrid materials. On the other hand, transformation of existing complex hierarchical natural structures such as wood or diatom frustules into other materials using shape-preserving chemistry is another approach toward minerals with complex biomimetic structure. The theme topic in this issue will focus on recent biomimetic and bioinspired approaches used to achieve control over the shape and organization of mineral and organic-inorganic hybrid materials. The different contributions will also highlight the advantages of these methods for advanced materials synthesis, and possible applications will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., Fratzl, P., Science 309, 275 (2005).CrossRefGoogle Scholar
2.Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K., Nature 399, 761 (1999).CrossRefGoogle Scholar
3.Bäuerlein, E., Handbook of Biomineralization (Wiley-VCH, Weinheim, 2007).CrossRefGoogle Scholar
4.Mann, S., Nature 365, 499 (1993).CrossRefGoogle Scholar
5.Cölfen, H., Mann, S., Angew. Chem. Int. Ed. 42, 2350 (2003).CrossRefGoogle Scholar
6.Harting, P.Q., J. Microsc. Sci. 12, 118 (1872).Google Scholar
7.Berman, A., Addadi, L., Weiner, S., Nature 331, 546 (1988).Google Scholar
8.Nudelman, F., Chen, H.H., Goldberg, H.A., Weiner, S., Addadi, L., Faraday Discuss. 136, 9 (2007).CrossRefGoogle Scholar
9.Meldrum, F.C., Cölfen, H., Chem. Rev. 108, 4332 (2008).CrossRefGoogle Scholar
10.Haeckel, E., Kunstformen der Natur (Prestel Verlag, New York, 1904, reprinted 1998), http://caliban.mpiz-koeln.mpg.de/~stueber/haeckel/kunstformen/natur.html.Google Scholar
11.Sun, Q.Y., Vrieling, E.G., van Santen, R.A., Sommerdijk, N.A.J.M., Curr. Opin. Solid State Mater. Sci. 8, 111 (2004).CrossRefGoogle Scholar
12.Vrieling, E.G., Sun, Q.Y., Tian, M., Kooyman, P.J., Gieskes, W.W.C., van Santen, R.A., Sommerdijk, N.A.J.M., Proc. Nat. Acad. Sci. U.S.A. 104, 10441 (2007).CrossRefGoogle Scholar
13.Sumper, M., Kröger, N., J. Mater. Chem. 14, 2059 (2004).CrossRefGoogle Scholar
14.Volmer, M., Kinetik der Phasenbildung (Steinkopff Verlag, Dresden, 1939), p. 220.Google Scholar
15.Xu, A.W., Ma, Y.R., Cölfen, H., J. Mater. Chem. 17, 415 (2007).CrossRefGoogle Scholar
16.Sommerdijk, N.A.J.M., de With, G., Chem. Rev. 108, 4499 (2008).CrossRefGoogle Scholar
17.Nishimura, T., Ito, T., Yamamoto, Y., Yoshio, M., Kato, T., Angew. Chem. Int. Ed. 47, 2800 (2008).CrossRefGoogle Scholar
18.Addadi, L., Joester, D., Nudelman, F., Weiner, S., Chem. Eur. J. 12, 981 (2006).CrossRefGoogle Scholar
19.Li, H.Y., Estroff, L.A., J. Am. Chem. Soc. 129, 5480 (2007).CrossRefGoogle Scholar
20.Popescu, D.C., Smulders, M.M.J., Pichon, B.P., Chebotareva, N., Kwak, S.Y., van Asselen, O.L.J., Sijbesma, R.P., DiMasi, E., Sommerdijk, N.A.J.M., J. Am. Chem. Soc. 129, 14058 (2007).CrossRefGoogle Scholar
21.Cavalli, S., Popescu, D.C., Tellers, E.E., Vos, M.R.J., Pichon, B.P., Overhand, M., Rapaport, H., Sommerdijk, N.A.J.M., Kros, A., Angew. Chem. Int. Ed. 45, 739 (2006).CrossRefGoogle Scholar
22.Park, R.J., Meldrum, F.C., Advanced Materials 14, 1167 (2002).3.0.CO;2-X>CrossRefGoogle Scholar
23.Park, R.J., Meldrum, F.C., Journal of Materials Chemistry 14, 2291 (2004).CrossRefGoogle Scholar
24.Wucher, B., Yue, W.B., Kulak, A.N., Meldrum, F.C., Chem. Mater. 19, 1111 (2007).CrossRefGoogle Scholar
25.Weiner, S., Sagi, I., Addadi, L., Science 309, 1027 (2005).CrossRefGoogle Scholar
26.Politi, Y., Arad, T., Klein, E., Weiner, S., Addadi, L., Science 306, 1161 (2004).CrossRefGoogle Scholar
27.Mahamid, J., Sharir, A., Addadi, L., Weiner, S., Proc. Nat. Acad. Sci. U.S.A. 105, 12748 (2008).CrossRefGoogle Scholar
28.Gehrke, N., Nassif, N., Pinna, N., Antonietti, M., Gupta, H.S., Cölfen, H., Chem. Mater. 17, 6514 (2005).CrossRefGoogle Scholar
29.Gower, L.B., Chem. Rev. 108, 4551 (2008).CrossRefGoogle Scholar
30.Aizenberg, J., Muller, D.A., Grazul, J.L., Hamann, D.R., Science 299, 1205 (2003).CrossRefGoogle Scholar
31.Eanes, E.D., Gillesse, I.H., Gosner, A.S., Nature 208, 365 (1965).CrossRefGoogle Scholar
32.Navrotsky, A., Proc. Nat. Acad. Sci. U.S.A. 101, 12096 (2004).CrossRefGoogle Scholar
33.Gebauer, D., Völkel, A., Cölfen, H., Science 322, 1819 (2008).CrossRefGoogle Scholar
34.Pouget, E.M., Bomans, P.H.H., Goos, J., Frederik, P.M., de With, G., Sommerdijk, N.A.J.M., Science 323, 1555 (2009).CrossRefGoogle Scholar
35.Meldrum, F.C., Sear, R.P., Science 322, 1802 (2008).CrossRefGoogle ScholarPubMed
36.Gebauer, D., Cölfen, H., Verch, A., Antonietti, M., Adv. Mater. 21, 435 (2009).CrossRefGoogle Scholar
37.Cölfen, H., Antonietti, M., Mesocrystals and Nonclassical Crystallization (Wiley, New York, 2008).CrossRefGoogle Scholar
38.Oaki, Y., Kotachi, A., Miura, T., Imai, H., Adv. Funct. Mater. 16, 1633 (2006).CrossRefGoogle Scholar
39.Penn, R.L., Banfield, J.F., Geochim. Cosmochim. Acta 63, 1549 (1999).CrossRefGoogle Scholar
40.Banfield, J.F., Welch, S.A., Zhang, H.Z., Ebert, T.T., Penn, R.L., Science 289, 751 (2000).CrossRefGoogle Scholar
41.Yu, S.H., Cölfen, H., Tauer, K., Antonietti, M., Nat. Mater. 4, 51 (2005).CrossRefGoogle Scholar
42.Wang, T.X., Reinecke, A., Cölfen, H., Langmuir 22, 8986 (2006).CrossRefGoogle ScholarPubMed
43.Kulak, A.N., Iddon, P., Li, Y.T., Armes, S.P., Cölfen, H., Paris, O., Wilson, R.M., Meldrum, F.C., J. Am. Chem. Soc. 129, 3729 (2007).CrossRefGoogle Scholar
44.Cölfen, H., Antonietti, M., Angew. Chem. Int. Ed. 44, 5576 (2005).CrossRefGoogle Scholar
45.Bao, Z.H., Weatherspoon, M.R., Shian, S., Cai, Y., Graham, P.D., Allan, S.M., Ahmad, G., Dickerson, M.B., Church, B.C., Kang, Z.T., Abernathy, H.W., Summers, C.J., Liu, M.L., Sandhage, K.H., Nature 446, 172 (2007).CrossRefGoogle Scholar
46.Greil, P., Lifka, T., Kaindl, A., J. Eur. Ceram. Soc. 18, 1961 (1998).CrossRefGoogle Scholar
47.Popescu, D.C., van Leeuwen, E.N.M., Rossi, N.A.A., Holder, S.J., Jansen, J.A., Sommerdijk, N.A.J.M., Angew. Chem. Int. Ed. 45, 1762 (2006).CrossRefGoogle Scholar
48.Peterlik, H., Roschger, P., Klaushofer, K., Fratzl, P., Nat. Mater. 5, 52 (2006).CrossRefGoogle Scholar
49.Davis, M.E., Nature 417, 813 (2002).CrossRefGoogle Scholar
50.Bonderer, L.J., Studart, A.R., Gauckler, L.J., Science 319, 1069 (2008).CrossRefGoogle Scholar
51.Ahmad, G., Dickerson, M.B., Church, B.C., Cai, Y., Jones, S.E., Naik, R.R., King, J.S., Summers, C.J., Kröger, N., Sandhage, K.H., Adv. Mater. 18, 1759 (2006).CrossRefGoogle Scholar
52.Sommerdijk, N.A.J.M., van Leeuwen, E.N.M., Vos, M.R.J., Jansen, J.A., Calcium carbonate thin films as biomaterials coatings using DNA as crystallization inhibitor, Cryst. Eng. Comm. 1209 (2007).CrossRefGoogle Scholar