Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T00:07:18.408Z Has data issue: false hasContentIssue false

Engineering Materials for Regenerative Medicine

Published online by Cambridge University Press:  31 January 2011

V. Prasad Shastri
Affiliation:
University of Freiberg79104, Germany; tel. 49-761-203-6268; and e-mail [email protected].
Andreas Lendlein
Affiliation:
Institute of Polymer Research, GKSS Research Center, Kantstr. 55, 14513 Teltow, Germany; tel. 49-3328-352-450; and e-mail [email protected].
Get access

Abstract

The mammalian physiology represents a level of sophistication in materials design, assembly, and function that has yet to be replicated by the modern tools of materials science. Although, the building blocks of our body (pluripotent stem and progenitor cells) are still available within our tissues, the absence of the biological and structural cues that drove the development process early on, in an adult, limits our ability to regenerate after an injury. The goal of regenerative medicine is therefore to recapitulate embryonic events within an artificially defined materials space (i.e., the niche) so that the repair processes can be triggered using our reservoir of stem cells. This engineering of the regenerative niche will require an interdisciplinary exercise involving materials scientists, biologists, and clinicians. The success of this exercise will hinge on our ability to develop materials that incorporate principles of wound healing, lessons from immunology and developmental biology, and knowledge of cellular mechanics and molecular biology such that they can mimic the cellular environment, instruct cells to make fate decisions, and direct the hierarchical organization of tissues. This article presents the current state of this challenge in the implementation of regenerative therapies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Massia, S.P., Hubbell, J.A., Ann. N.Y. Acad. Sci. 589, 261 (1990).CrossRefGoogle Scholar
2.Chen, R.R., Mooney, D.J., Pharm. Res. 20, 1103 (2003).CrossRefGoogle Scholar
3.Freed, L.E., Vunjak-Novakovic, G., Biron, R.J., Eagles, D.B., Lesnoy, D.C., Barlow, S.K., Langer, R., Biotechnol. 12, 689 (1994).Google Scholar
4.Shastri, V.P., Martin, I., Langer, R., Proc. Natl. Acad. Sci. U.S.A. 97, 1970 (2000).CrossRefGoogle Scholar
5.Yannas, I.V., Lee, E., Orgill, D.P., Skrabut, E.M., Murphy, G.F., Proc. Natl. Acad. Sci. U.S.A. 86, 933 (1989).CrossRefGoogle Scholar
6.Xu, T., Jin, J., Gregory, C., Hickman, J.J., Boland, T., Biomater. 26, 93 (2005).CrossRefGoogle Scholar
7.Boland, T., Xu, T., Damon, B., Cui, X., Biotechnol. J. 1, 910 (2006).CrossRefGoogle Scholar
8.Souza, G.R., Molina, J.R., Raphael, R.M., Ozawa, M.G., Stark, D.J., Levin, C.S., Bronk, L.F., Ananta, J.S., Mandelin, J., Georgescu, M.M., Bankson, J.A., Gelovani, J.G., Killian, T.C., Arap, W., Pasqualini, R., Nat. Nanotechnol. 5, 291 (2010).CrossRefGoogle Scholar
9.Wong, J.Y., Langer, R., Ingber, D.E., Proc. Natl. Acad. Sci. U.S.A. 91, 3201 (1994).CrossRefGoogle Scholar
10.Schmidt, C.E., Shastri, V.R., Vacanti, J.P., Langer, R., Proc Natl. Acad. Sci. U.S.A. 94, 8948 (1997).CrossRefGoogle Scholar
11.Shastri, V. P., Schmidt, C.E., Kim, T.-H., Vacanti, J.P., Langer, R., Mat. Res. Soc. Symp. Proc. 414, 114 (1996).Google Scholar
12.Aebischer, P., Valentini, R.F., Dario, P., Domenici, C., Galletti, P.M., Brain Res. 436, 165 (1987).CrossRefGoogle Scholar
13.Valentini, R.F., Vargo, T.G., Gardella, J.A. Jr., Aebischer, P., Biomater. 13, 183 (1992).CrossRefGoogle Scholar
14.Yang, J., Yamato, M., Okano, T., MRS Bull. 30, 189 (2005).CrossRefGoogle Scholar
15.Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., Nagai, S., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T., Tano, Y., N. Engl. J. Med. 351, 1187 (2004).CrossRefGoogle Scholar
16.Heskins, M., Guillet, J.E., J. Macromol. Sci. Part A, 2, 1441 (1968).CrossRefGoogle Scholar
17.Hartgerink, J.D., Beniash, E., Stupp, S.I., Science, 294, 1684, (2001).CrossRefGoogle Scholar
18.Hartgerink, J.D., Beniash, E., Stupp, S.I., Proc. Natl. Acad. Sci. U.S.A. 99, 5133 (2002).CrossRefGoogle Scholar
19.Zhang, S., Holmes, T., Lockshin, C., Rich, A., Proc. Natl. Acad. Sci. U.S.A. 90, 334 (1993).Google Scholar
20.Stevens, M.M., Flynn, N.T., Wang, C., Tirrell, D.A., Langer, R., Adv. Mater. 16, 915 (2004).CrossRefGoogle Scholar
21.Folkman, J., Moscona, A., Nature, 273, 345 (1978).CrossRefGoogle Scholar
22.Thoumine, O., Ziegler, T., Girard, P.R., Nerem, R.M., Exp. Cell Res. 219, 427 (1995).CrossRefGoogle Scholar
23.Girard, P.R., Nerem, R.M., J. Cell Physiol. 163, 179 (1995).CrossRefGoogle Scholar
24.Singhvi, R., Kumar, A., Lopez, G.P., Stephanopoulos, G.N., Wang, D.I., Whitesides, G.M., Ingber, D.E., Science, 264, 696 (1994).CrossRefGoogle Scholar
25.Chen, C.S., Mrkisich, M., Huang, S., Whitesides, G.M., Ingber, D.E., Science, 276, 1425 (1997).CrossRefGoogle Scholar
26.Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., Cell 131, 861 (2007).CrossRefGoogle Scholar
27.Stevens, M.M., Marini, R.P., Schaeffer, D., Aronson, J., Langer, R., Shastri, V.P., Proc. Natl. Acad. Sci. U.S.A. 102, 11450 (2005).CrossRefGoogle Scholar
28.Emans, P.J., Van Rhijn, L.W., Welting, T.J., Cremers, A., Wijnands, N., Spaapen, F., Voncken, J.W., Shastri, V.P., Proc. Natl. Acad. Sci. U.S.A. 107, 3418 (2010).CrossRefGoogle Scholar
29.Rickert, D., Scheithauer, M.O., Coskum, S., Kelch, S., Lendlein, A., Franke, R.P., Clin. Hemorheol. Microcirc. 36, 301 (2007).Google Scholar
30.Lendlein, A., Schmidt, A.M., Langer, R., Proc. Natl. Acad. Sci. U.S.A. 98, 842 (2001).Google Scholar
31.Lendlein, A., Behl, M., Hiebl, B., Wischke, C., Expert Rev. Med. Devices, 7, 357 (2010).CrossRefGoogle Scholar