Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T02:38:01.234Z Has data issue: false hasContentIssue false

Carbon Materials as Adsorbents for the Removal of Pollutants from the Aqueous Phase

Published online by Cambridge University Press:  03 May 2012

Get access

Extract

Activated carbons are the most important carbon materials used in water treatment. Their known world production is around 500,000 tons per year, of which about 80% is used for liquid-phase applications. These solids are manufactured in powder or granular form from a large variety of raw materials and are unique and versatile adsorbents due to their highly developed porosity, their large surface area (which in some cases can be up to 3000 m2/g), and their variable surface chemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Radovic, L.R., Moreno-Castilla, C., and Rivera-Utrilla, J., in Chemistry and Physics of Carbon, Vol. 27, edited by Radovic, L.R. (Marcel Dekker, New York, 2000) p. 227.CrossRefGoogle Scholar
2.Bansal, R.C., Donnet, J.B., and Stoeckli, F., Active Carbon (Marcel Dekker, New York, 1988).Google Scholar
3.Rodríguez-Reinoso, F., in Introduction to Carbon Technologies, Chapter 2, edited by Marsh, H., Heinz, E.A., and Rodríguez-Reinoso, F. (Publicaciones de la Universidad de Alicante, Spain, 1997) p. 35.Google Scholar
4.López-Ramón, M.V., Stoeckli, F., Moreno-Castilla, C., and Carrasco-Marín, F., Carbon 37 (1999) p. 1215.CrossRefGoogle Scholar
5.Moreno-Castilla, C., López-Ramón, M.V., and Carrasco-Marín, F., Carbon 38 (2000) p. 1995.CrossRefGoogle Scholar
6.Boehm, H.P., Carbon 32 (1994) p. 759.CrossRefGoogle Scholar
7.León, C. León y and Radovic, L.R., in Chemistry and Physics of Carbon, Vol. 24, edited by Thrower, P.A. (Marcel Dekker, New York, 1994) p. 213.Google Scholar
8.Bautista-Toledo, I., Rivera-Utrilla, J., Ferro-García, M.A., and Moreno-Castilla, C., Carbon 32 (1994) p. 93.CrossRefGoogle Scholar
9.Lyklema, J., Leuwen, H. van, and Minor, M., Adv. Colloid Interface Sci. 83 (1999) p. 33.CrossRefGoogle Scholar
10.Müller, G., Radke, C.J., and Prausnitz, J.M., J. Phys. Chem. 84 (1980) p. 369.CrossRefGoogle Scholar
11.Moreno-Castilla, C., Rivera-Utrilla, J., López-Ramón, M.V., and Carrasco-Marín, F., Carbon 33 (1995) p. 845.CrossRefGoogle Scholar
12.Puri, B.R., Bhardwaj, S.S, and Gupta, U., J. Indian Chem. Soc. 53 (1976) p. 1095.Google Scholar
13.Stoeckli, F., López-Ramón, M.V., and Moreno-Castilla, C., Langmuir 17 (2001) p. 3301.CrossRefGoogle Scholar
14.Coughlin, R.W., Ezra, F.S., and Tan, R.N., J. Colloid Interface Sci. 28 (1968) p. 386.CrossRefGoogle Scholar
15.Mahajan, O.P., Moreno-Castilla, C., and Walker, P.L. Jr, Sep. Sci. Technol. 15 (1980) p. 1733.CrossRefGoogle Scholar
16.Mattson, J.S., Mark, H.B., Malbin, M.D., Weber, W.J. Jr, and Critenden, J.C., J. Colloid Interface Sci. 31 (1969) p. 116.CrossRefGoogle Scholar