Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T05:00:57.670Z Has data issue: false hasContentIssue false

Electrochemical Characterization of TiO2 Nanotubular Films Exposed in an Aqueous Solution with a pH = 3.2

Published online by Cambridge University Press:  08 September 2017

S. Mejía Sintillo
Affiliation:
Instituto de Investigaciones en Ciencias Básicas y Aplicadas-Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P.62209, Cuernavaca, Mor., México.
C. Cuevas Arteaga*
Affiliation:
Instituto de Investigaciones en Ciencias Básicas y Aplicadas-Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P.62209, Cuernavaca, Mor., México.
R. Ma. Melgoza Alemán
Affiliation:
Facultad de Ciencias Químicas e Ingeniería-Universidad Autónoma del Estado de Morelos.
P. Mijaylova Nacheva
Affiliation:
Instituto Mexicano de Tecnología del Agua, Postgrado en Ingeniería Ambiental de la UNAM-Campus IMTA, Blvd. Paseo Cuauhnahuac 8532, Progreso, 62550Jiutepec, Mor., México.
*
*Corresponding Author. (Email: [email protected])
Get access

Abstract

TiO2 nanotubular structures were fabricated on Ti polished and unpolished foils exposed to H2O-Glycerol (50-50Vol.%)+0.27 M NH4F at 20V. The obtained TiO2 nanostructures were analyzed by SEM obtaining the morphological characterization, from which the roughness factors were calculated. Crystalline phases of both TiO2 nanotubular films were obtained by XRD after annealing at 450 °C and 600 °C for 2 h. The electrochemical stability of the TiO2 nanotubular films was obtained from the potentiodynamic polarization curves (PC) and the linear polarization resistance (Lpr) techniques, exposing the samples in 1M Na2SO4 + H2SO4 solution (pH = 3.2), such pH is in accordance with the acidic wastewater containing sulfur compounds coming from the industries or acid waters of the aquifers, which have been contaminated from the volcanoes nearby. It was concluded that the electrochemical stability of the crystallized nanotubular films is improved with the increase of the annealing temperature of the amorphous TiO2 arrays, which is associated to the higher composition of anatase and rutile, observing that the major amount of rutile improved the corrosion performance. The photoelectrochemical measurements were carried out in 0.5 M Na2SO4 solution using an 8 W UV lamp at a λ= 365 nm, whose results were recorded at zero bias during 10 min under darkness and illumination intervals of 1 min each. The obtained results were in agreement with the necessary features for being used in photocatalytic water remediation.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albu, S. P. and Schmuki, P., Electrochim. Acta, Vol. 91, pp. 9095, (2013).Google Scholar
Reynaud Morales, A. G., Concha Guzmán, M. O., and Cuevas Arteaga, C., Corros. Rev., Vol. 29, No. 1–2, pp. 105121,( 2011).CrossRefGoogle Scholar
Gregorio-Vázquez, Lucia, Cuevas-Arteaga, Cecilia, Hernández, Grecia, Ángel-Meraz, Ebelia del, Av. Cien. Ing.: 4(1), 8595 (January/March, 2013)Google Scholar
Bauer, S., Schmuki, P., von der Mark, K., and Park, J., Prog. Mater. Sci., Vol. 58, No. 3, pp. 261326, (2012).Google Scholar
Alivov, Y., Fan, Z. Y., and Johnstone, D., J. Appl. Phys., Vol. 106, No. 3, pp. 510, (2009).Google Scholar
Diaz, E. F., Cuevas-Arteaga, C., Flores-García, N., Sintillo, S.Mejía, and Sotelo-Mazón, O., J. Spectroscopy, Article ID 826759, 12 pages, Volume (2015).Google Scholar
Macak, J. M., Hildebrand, H., Marten-Jahns, U., and Schmuki, P., J. Electroanal. Chem., Vol. 621, No. 2, pp. 254266, (2008).CrossRefGoogle Scholar
Vera-Jiménez, A. M., Melgoza-Alemán, R. M., Valladares-Cisneros, M. G., and Cuevas-Arteaga, C, J. Nanomaterials Article ID 624073,12 pages, Vol. (2015).Google Scholar
Acevedo-Peña, P., González, F., González, G., & González, I..Physical Chemistry Chemical Physics : PCCP, 16(47), 26213–20. (2014).Google Scholar
Yu, Jiaguo, Bo Wang State, Applied Catalysis B: Environmental 94 295302, (2010)Google Scholar
Cuevas-Arteaga, C. Corrosion Science 50.3: 650663, (2008).CrossRefGoogle Scholar
Atyaoui, A.,a,b Cachet, H.,b Sutterb, E. M. M. and Bousselmia, L., Surf. Interface Anal.45, 17511759, (2013).CrossRefGoogle Scholar
Carp, O., Huisman, C.L., Reller, A., Progress in Solid State Chemistry 32 33177 (2004).CrossRefGoogle Scholar