Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T15:16:17.852Z Has data issue: false hasContentIssue false

Surfactant-Assisted Synthesis of Tetragonal Porphyrin Microparticles

Published online by Cambridge University Press:  22 March 2018

Kaifu Bian
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123
Leanne Alarid
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123
Casey Karler
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123
Austin Hwang
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123
Dongmei Ye
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123
Hongyou Fan*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87123 The University of New Mexico Center for Micro-Engineered Materials, Albuquerque, New Mexico87131
*
Get access

Abstract

In an effort to utilize their unique photoactive properties, porphyrin monomers were assembled into tetragonal microparticles by a surfactant-assisted neutralization method through the cooperative interactions between the porphyrin building blocks including π-π stacking, J-aggregation and metal-ligand coordination. Electron microscopy characterization in combination with x-ray diffraction confirmed the three-dimensional ordered tetragonal microstructures with stable crystalline frameworks and well defined external surface morphology. Optical absorption and fluorescence spectroscopy revealed enhanced absorbance properties as compared with the raw porphyrin material, favourable for chromophore excitation and energy transport. With active and responsive optical properties, these new porphyrin microparticles look to serve as promising components for a wide range of applications including sensing, diagnostics, solar cells, and optoelectronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mauzerall, D. C., Clin. Dermatol. 16, 195 (1998).CrossRefGoogle Scholar
Drain, C. M., Varotto, A. and Radivojevic, I., Chem. Rev. 109, 1630 (2009).CrossRefGoogle Scholar
Zhong, Y., Wang, Z., Zhang, R., Bai, F., Wu, H., Haddad, R. and Fan, H., ACS Nano 8, 827 (2014).CrossRefGoogle Scholar
Zhong, Y., Wang, J., Zhang, R., Wei, W., Wang, H., Lu, X., Bai, F., Wu, H., Haddad, R. and Fan, H., Nano Lett. 14, 7175 (2014)CrossRefGoogle Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R., Coker, E., Huang, J., Rodriguez, M. and Fan, H., Nano Lett. 11, 5196 (2011).CrossRefGoogle Scholar
Wang, Z., Medforth, C. J. and Shelnutt, J. A., J. Am. Chem. Soc. 126, 15954 (2004).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, L., Zhang, N., Cao, R., Bian, K., Alarid, L., Haddad, R., Bai, F. and Fan, H., Nano Lett. 16, 6523 (2016).CrossRefGoogle Scholar
Medforth, C. J., Wang, Z., Martin, K. E., Song, Y., Jacobsen, J. L. and Shelnutt, J. A., Chem. Comm. 47, 7261 (2009).CrossRefGoogle Scholar
Chen, Y., Li, A., Huang, Z., Wang, L. and Kang, F., Nanomaterials 6, 51 (2016).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, X., Yang, W., Bai, F., Zhang, B., Alarid, L., Bian, K. and Fan, H., Nano Lett. 17, 6916 (2017).CrossRefGoogle Scholar
Bai, F., Li, B., Bian, K., Haddad, R., Wu, H., Wang, Z. and Fan, H., Adv. Mat. 28, 1989 (2016)CrossRefGoogle Scholar
Bai, F., Wu, H., Haddad, R., Sun, Z., Schmitt, S., Skocypec, V. and Fan, H., Chem. Commun. 46, 4941 (2010)CrossRefGoogle Scholar