Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T03:06:58.905Z Has data issue: false hasContentIssue false

Enhanced Reliability of Top-pinned Perpendicular Magnetic Tunnel Junction by Post-oxidation of Sputtered MgO Barrier

Published online by Cambridge University Press:  30 January 2017

Chikako Yoshida*
Affiliation:
Fujitsu Limited, 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan
Hideyuki Noshiro
Affiliation:
Fujitsu Limited, 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan
Yuichi Yamazaki
Affiliation:
Fujitsu Limited, 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan
Toshihiro Sugii
Affiliation:
Fujitsu Limited, 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan
*
Get access

Abstract

We proposed an MgO barrier which is fabricated by combination of rf-sputter deposition of MgO film and subsequent in-situ post oxidation (PO). We found that the perpendicular magnetic anisotropy (PMA) of the CoFeB layer formed on this MgO barrier with PO was improved. We also found that a short error rate reduced drastically and a magnetoresistance (MR) ratio increased about 20% for the magnetic tunnel junction (MTJ) with this MgO barrier with PO. In addition, we showed that this MgO barrier with PO has long endurance life compared with conventional sputtered MgO barriers, and has a potential to operate over 1016 write cycles.

Furthermore, we have observed that the PO could suppress the Fe diffusion into the MgO barrier and form Fe-O bonding at MgO/CoFeB interface using electron energy-loss spectroscopy (EELS). The obtained results might be involved to the improvement of PMA and MTJ characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhao, W, Zhao, X, Zhang, B, Cao, K, Wang, L, Kang, W. Shi, Q., Wang, M., Zhang, Y., Wang, Y., Peng, S., Klein, J., Naviner, L., and Ravelosona, D., Materials 9, 41 (2016).Google Scholar
Kim, D. J., Choi, W. S., Schleicher, F., Shin, R. H., Boukari, S., Davesne, V., Kieber, C., Arabski, J., Schmerber, G., Beaurepaire, E., Jo, W., and Bowen, M. et al., Appl. Phys. Lett. 97, 263502 (2010).Google Scholar
Iba, Y., Yoshida, C., Hatada, A., Nakabayashi, M., Takahashi, A., Yamazaki, Y., Noshiro, H., Tsunoda, K., Takenaga, T., Aoki, M. and Sugii, T., VLSI Tech. Dig., T136, 2013.Google Scholar
Amara-Dababi, S., Sousa, R. C., Chshiev, M., Béa, H., Alvarez-Hé rault, J., Lombard, L., Prejbeanu, I. L., Mackay, K., and Dieny, B., Appl. Phys. Lett. 99, 083501 (2011).Google Scholar
Degraeve, R., Ogier, J. L., Bellens, R., Roussel, P. J., Groeseneken, G., and Maes, H. E., IEEE Trans. Electron Devices 45, 472 (1998).Google Scholar
Yoshida, C., Kurasawa, M., Lee, Y. M., Tsunoda, K., Aoki, M., and Sugiyama, Y., Proc. IEEE Int. Reliability Physics Symp., (2009) p. 139.Google Scholar
Sato, S., Honjo, H., Ikeda, S., Ohno, H., Endoh, T., and Niwal, M., Jpn. J. Appl. Phys. 55, 04EE05 (2016).Google Scholar
Komagaki, K., Hattori, M., Noma, K., Kanai, H., Kobayashi, K., Uehara, Y., Tsunoda, M., and Takahashi, M., IEEE Trans. Magn. 45, 3453 (2009).Google Scholar
Wu, E., Aitken, J., Novak, E., Vayshenker, A., Varekamp, P., Hueckel, G., and McKenna, J., IEDM Technical Digest, (2000) p541.Google Scholar
Shimabukuro, R., Nakamura, K., Akiyama, T., and Ito, T., Phys. E 42, 1014 (2010).CrossRefGoogle Scholar
Yang, H. X., Chshiev, M., Dieny, B., Lee, J. H., Manchon, A., and Shin, K. H., Phys. Rev. B 84, 054401 (2011).Google Scholar
Tsai, W. C., Liao, S. C., Hou, H. C., Yen, C. T., Wang, Y. H., Tsai, H. M., Chang, F. H., Lin, H. J., and Lai, Chih-Huang, Appl. Phys. Lett. 100, 172414 (2012).Google Scholar
Kurata, N. Tanaka, Microsc. Microanal. Microstruct. 2, 183 (1991).Google Scholar