Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T13:04:01.628Z Has data issue: false hasContentIssue false

Sodic amphiboles in fenites from the Loe Shilman carbonatite complex, NW Pakistan

Published online by Cambridge University Press:  05 July 2018

I. Mian
Affiliation:
Department of Geology, The University, Leicester LE1 7RH, UK
M. J. Le Bas
Affiliation:
Department of Geology, The University, Leicester LE1 7RH, UK

Abstract

The carbonatites at Loe Shilman, near Khyber in NW Pakistan, fenitize their country rocks to form a metasomatic zone c.100 m wide of alternate dark blue (mafic) and pale grey (felsic) banded fenites which grade into unfenitized bedded slates and phyllites. The Na-amphiboles in the banded fenites form a complete solid solution series between magnesio-arfvedsonite and magnesio-riebeckite which coexist with varying proportions of aegirine, albite, and K-feldspar, with or without phlogopite or biotite.

The amphiboles show a gradual decrease in Na2O, K2O, Mg ratio [100Mg/(Mg + FeT + Mn)] and iron oxidation ratio, and an increase in total iron away from the carbonatite contact. The pleochroism correlates with the chemistry and distance from the carbonatite contact.

The Mg ratio decreases from 74 to 35 away from the carbonatite contact. The iron oxidation ratio [100Fe3+/ (Fe3+ + Fe2+)] decreases in the magnesio-arfvedsonite for the first 30 metres from the carbonatite contact, and then increases in the magnesio-riebeckite from 40 to 60 metres from the carbonatite contact. K relative to Na decreases away from the contact in the amphibole, and the decrease in K causes an increase in vacancy in the A site. The main variation in the chemistry in this solid solution series is due to (K,Na)A+(Mg,Fe2+)c ⇌ □ + (Fe3+)c substitution.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. (1984a) Lithos, 17, 153-70.Google Scholar
Andersen, T. (1984b) Norsk. Geol. Tidsskr, 3, 221-34.Google Scholar
Bryan, W.B., Finger, L.W., and Chayes, F. (1969) Science, 163, 926-7.Google Scholar
Currie, K.L., and Ferguson, J. (1971) Can. J. Earth Sci, 8, 498-517.Google Scholar
Deer, W.A., Howie, R.A., and Zussman, J. (1963) Rock forming minerals, 2. Longmans, London.Google Scholar
Hogarth, D.D., and Lapointe, P. (1984) Can. Mineral, 22, 281-95.Google Scholar
Jan, M.Q., Kamal, M, and Qureshi, A.A. (1981) Geol. Bull. Univ. Peshawar, 14, 29-43.Google Scholar
Kempe, D.R.C. and Jan, M.Q. (1970) Geol. Mag, 107, 395-8.Google Scholar
Leake, B.E. (1978) Mineral. Mag, 42, 533-63.Google Scholar
Le Bas, M.J. (1977) Carbonatite-Nephelinite Vokanism. Wiley, London.Google Scholar
McKie, D. (1966) Fenitization. In Carbonatites (O. F. Tuttle and J. Gittins, eds.), 261-94. Wiley, London.Google Scholar
Mehnert, K.R. (1969) In Handbook of Geochemistry (K. H. Wedelpohl, ed.), 1, 283. Springer-Verlag, Heidelberg.Google Scholar
Mitchell, R.H. and Platt, R.G. (1982) J. Petrol, 23, 186-214.Google Scholar
Papike, J.J., Cameron, K.L., and Baldwin, K. (1974) Geol. Soc. Am. Annual Meeting Abs. with Programs,1053-4.Google Scholar
Rubie, D.C. and Gunter, W.D. (1983) Contrib. Mineral. Petrol. 82, 165-75.Google Scholar
Secher, K., and Larsen, L.M. (1980) Lithos, 13, 199-212.Google Scholar
Viladkar, S.G. (1980) Geol. Mag, 117, 285-92.Google Scholar
Strong, D.F., and Taylor, R.P. (1984) Tschermaks Mineral. Petrol. Mitt. 32, 211-22.Google Scholar
Sutherland, D.S. (1969) Contrib. Mineral. Petrol, 24, 114-35.Google Scholar
Vartiainen, H. (1980) Geol. Surv. Finland, Bull.313.Google Scholar
Vartiainen, H. and Woolley, A.R. (1976. Ibid. 280.Google Scholar
Woolley, A.R. (1982) Mineral. Mag, 46, 13-17.Google Scholar

A correction has been issued for this article: