Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T19:21:06.771Z Has data issue: false hasContentIssue false

The phosphate mineral association of the granitic pegmatites of the Fregeneda area (Salamanca, Spain)

Published online by Cambridge University Press:  05 July 2018

E. Roda
Affiliation:
Dept. de Mineralogía y Petrología, Univ. del País Vasco/EHU, Apdo. 644, 48080 Bilbao, Spain
F. Fontan
Affiliation:
Univ. Paul Sabatier, URA 067, Toulouse, France
A. Pesquera
Affiliation:
Dept. de Mineralogía y Petrología, Univ. del País Vasco/EHU, Apdo. 644, 48080 Bilbao, Spain
F. Velasco
Affiliation:
Dept. de Mineralogía y Petrología, Univ. del País Vasco/EHU, Apdo. 644, 48080 Bilbao, Spain

Abstract

In the Fregeneda area different pegmatitic types can be distinguished on the basis of their mineralogy, internal structure and field relationships. The most common type corresponds with simple pegmatites with a homogeneous internal structure, but Li and Sn-bearing pegmatites are also relatively widespread, besides a minority group of Fe-Mn phosphate-bearing pegmatites that has recently been characterized. These pegmatites are located in an intermediate zone, between the barren pegmatites and the most evolved Li and Sn-bearing bodies, and they carry a complex association of phosphate minerals. The study of these phosphates has allowed the identification of the primary phases as wyllieite, graftonite, sarcopside, triplite-zwieselite and ferrisicklerite; the secondary phosphates are rosemaryite, heterosite-purpurite, alluaudite and väyrynenite. In this study, the main characteristics of these phosphate minerals are reported, including their chemical composition, analysed by electron microprobe, and their unit-cell parameters, calculated using X-ray powder diffraction techniques.

A common transformation mechanism in this phosphate association is the oxidation of the transition metal cations at the same time as Na-leaching in wyllieite to generate rosemaryite, and Li-leaching in ferrisicklerite to generate heterosite. The occurrence of sarcopside lamellae in ferrisicklerite and heterosite is evidence of the replacement processes of the former by the latter. A Na-metasomatic replacement of the early phosphates as ferrisicklerite and graftonite, producing alluaudite, is also a well developed process.

Phosphate minerals occur in pegmatites with an intermediate degree of fractionation, appearing between the barren and the more evolved pegmatites with Li and Sn, which is in agreement with the pegmatite field zonation established in the literature.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D.E. and Evans, H.T. Jr. (1973) Job 9214: indexing and least-squares refinement of powder diffraction data. U. S. Geol. Surv., Comp. Contrib. 20 Nat. Tech. Inf. Serv. Doc. PB2-16188.Google Scholar
Černý, P. (1991) Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geos. Can., 18, 6881.Google Scholar
Corbella i Cordomí, M. and Melgarejo i Draper, J.C. (1990) Caracteristicas y distribucion de los fosfatos de las pegmatitas granidcas de la peninsula del Cap de Creus (Pirineo oriental Catalan). BoL Soc. Esp. Mineral., 13, 169–82.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals. 2nd Edition, Longman Scientific and Technical, 663—9.Google Scholar
Dubois, J., Marchand, J. and Bourguignon, P. (1973) Donnees mineralogiques sur la serie amblygonite- montebrasite. Ann. Soc. Geol. Belg., 95, 285310.Google Scholar
Fontan, F., Roda, E., Pesquera, A. and Velasco, F. (1994) The phosphate mineral association of Fregeneda pegmatites (Salamanca, Spain). Abstracts of the 16th General Meeting of the IMA Pisa, Italy. 122.Google Scholar
Fontan, F., Huvelin, P., Orliac, M. and Permingeat, F. (1976) La ferrisicklerite des pegmatites de Sidi Bou Othmane (Jebilet, Maroc) et le groupe des mineraux a structure de triphylite. Bull. Soc. fr. Mineral. Cristallogr., 99, 274–86.Google Scholar
Fransolet, A.M. (1995) Wyllieite et rosemaryite dans la pegmatite de Buranga, Rwanda. Eur. J. Mineral., 7, 567-75.CrossRefGoogle Scholar
Fransolet, A M., Keller, P. and Fontan, F. (1986) The phosphate mineral associations of the Tsaobismund pegmatite, Namibia. Contrib. Mineral. Petrol., 92, 502–17.CrossRefGoogle Scholar
Greiner, D.J. and Donald Bloss, F. (1987) Amblygonite- montebrasite optics: response to (OH-) orientation and rapid estimation of F from 2V. Amer. Miner. 72, 617–24.Google Scholar
Huvelin, P., Orliac, M. and Permingeat, F. (1972) Ferri- alluaudite calcifere de Sidi-bou-Othmane (Jebilet, Maroc). Notes Serv. geol. Maroc, 32—241, 35—49.Google Scholar
Keller, P. and Von Knorring, O. (1989) Pegmatites at the Okatjimukuju farm, Karibib, Namibia Part I: phosphate mineral associations of the Clementine II pegmatite. Eur. J. Mineral., 1, 567–93.CrossRefGoogle Scholar
Loh, S.E. and Wise, W.S. (1976) Synthesis and fluorine- hydroxil exchange in the amblygonite series. Canad. Mineral., 14, 357–63.Google Scholar
London, D. and Burt, D.M. (1982) Lithium minerals in pegmatites. In Short course in granitic pegmatites in science and industry(Cerny, P., ed.) Mineralogical Association of Canada Short Course Handbook 8, 99133.Google Scholar
Lólpez Plaza, M. and Carnicero, M.A. (1988) El plutonismo Hercfnico de la penillanura salmantino- zamorana (centro-oeste de Espaa): Vision de conjunto en el contexto geologico regional. In Geologia de los granitoides y rocas asociadas del macizo Hesperico. Edit. Rueda, 53—68.Google Scholar
López Plaza, M. and Martinez Catalan, J.R. (1988) Sintesis estructural de los granitoides Hercmicos del macizo Hesperico. In Geologia de los granitoides y rocas asociadas del macizo Hesperico Edit Rueda, 195210.Google Scholar
Mason, B. (1941) Minerals of the Varutrask pegmatite. XXIII. Some ironmanganese phosphate minerals and their alteration products, with special reference to material from Varutriisk. 63, 117–65.Google Scholar
Moore, P.B. (1971) Crystal chemistry of the alluaudite structure type: contribution to the paragenesis of pegmatite phosphate giant crystals. Amer. Mineral., 56, 1955–75.Google Scholar
Moore, P.B. (1982) Pegmatite minerals of P(V) and B (III). In Short course in granitic pegmatites in science and industry(P. Cerny, ed.) Mineralogical Association of Canada Short Course Handbook 8, 267–91.Google Scholar
Moore, P.B. and Ito, J. (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineral. Mag. 43, 227—35.CrossRefGoogle Scholar
Pesquera, A., Fontan, F. and Velasco, F. (1986) Occurrence of alluaudite from a peraluminous minerals-bearing pegmatite in Cinco Villas (Basque Pyrenees, Navarra, Spain). Neues Jahrb. Mineral.Mh., 2, 82–8.Google Scholar
Quensel, P. (1937) Minerals of the Varutrask pegmatite. I: The lithium manganese phosphates. Geol. Foren ForhandL, 59, H. 4, 77.CrossRefGoogle Scholar
Roda, E. (1993) Caractensticas, distribucion y petro- genesis de las pegmatites de La Fregeneda (Salamanca, Spain). PhD Thesis, Univ. Pais Vasco, Spain, 200 pp.Google Scholar
Roda, E., Pesquera, A. and Velasco, F. (1993) Mica and K-feldspar as indicators of pegmatite evolution in the Fregeneda area (Salamanca, Spain). In Current research in geology applied to ore deposits (Fenoll Hach-Ali, P., Torres-Ruiz, J. and Gervilla, F., Editors), La Guioconda, Granada, 653—6.Google Scholar
Roda, E., Pesquera, A. and Velasco, F. (1995) Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain. Canad. Mineral., 33, 835–48.Google Scholar
Roda, E., Pesquera, A. and Velasco, F. (1996) Micas of the muscovite-lepidolite series from the Fregeneda pegmatites (Salamanca, Spain). Mineral. Petrol., 55, 145-57.Google Scholar
Shigley, J.E. and Brown, G.E. (1986) Lithiophylite formation in granitic pegmatites: a reconnaissance experimental study of phosphate crystallization from hydrous aluminosilicate melts. Amer. Mineral. 71, 356-66.Google Scholar