Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T20:45:42.716Z Has data issue: false hasContentIssue false

Crystal structure and crystal chemistry of fluorannite and its relationships to annite

Published online by Cambridge University Press:  05 July 2018

M. F. Brigatti*
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, Modena, Italy
E. Caprilli
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, Roma, Italy
D. Malferrari
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, Modena, Italy
A. Mottana
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, Roma, Italy

Abstract

This study focuses on the crystal-chemical characterization of fluorannite from the Katugin Ta-Nb deposit, Chitinskaya Oblast’, Kalar Range, Transbaikalia, eastern Siberia, Russia. The chemical formula of this mineral is (K0.960Na0.020Ba0.001)(Fe2+2.102Fe3+0.425Cr3+0.002Mg0.039Li0.085Ti0.210Mn0.057)(Al0.674Si3.326) O10(F1.060OH0.028O0.912). This mica belongs to the 1M polytype (space group C2/m) with layer parameters a = 5.3454(2) Å, b = 9.2607(4) Å, c = 10.2040(5) Å, b = 100.169(3)º. Structure refinement, using anisotropic displacement parameters, converged at R = 0.0384. When compared to annite, fluorannite shows a smaller cell volume (Vfluorannite = 497.19 Å3; Vannite = 505.71 Å3), because of its smaller lateral dimensions and c parameter. Flattening in the plane of the tetrahedral basal oxygen atoms decreases with F content, together with the A–O4 distance (i.e. the distance between interlayer cation A and the octahedral anionic position) due to the reduced repulsion between the interlayer cation and the anion sited in O4.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boukili, B., Robert, J.-L., Bény, J.-M. and Holtz, F. (2001) Structural effects of OH–F substitution in trioctahedral micas of the system: K2O−FeO−Fe2O3−Al2O3−SiO2−H2OHF. Schweizerische Mineralogische und Petrographische Mitteilungen, 81, 55–67.Google Scholar
Boukili, B., Holtz, F., Bény, J.–M. and Robert, J.–L. (2002) Fe–F and Al–F avoidance rule in ferrousaluminous (OH, F) biotites. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 549–559.Google Scholar
Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature and solid solution on atomisticmodels. Pp. 1–98 in: Micas: Crystal Chemistry and Metamorphic Petrology (Mottana, A., Sassi, F.P., Thompson, J.B. Jr. and Guggenheim, S., editors). Reviews in Mineralogy and Geochemistry 46, Mineralogical Society of America, Washington D.C. Google Scholar
Brigatti, M.F., Lugli, C., Poppi, L., Foord, E.E. and Kile, D. (2000a) Crystal chemical variations in Li– and Ferich micas from Pikes Peak batholith (central Colorado). American Mineralogist, 85, 1275–1286.CrossRefGoogle Scholar
Brigatti, M.F., Frigieri, P., Ghezzo, C. and Poppi, L. (2000b) Crystal chemistry of Al–rich biotites coexisting with muscovites in peraluminous granites. American Mineralogist, 85, 436–448.CrossRefGoogle Scholar
Bruker (2003a) APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker (2003b) SAINT–IRIX. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Comodi, P., Zanazzi, P.F., Weiss, Z., Rieder, M. and Drabek, M. (1999) ‘Cs–tetra–ferri– annite’: highpressure and high–temperature behavior of a potential nuclear waste disposal phase. American Mineralogist, 84, 325–332.CrossRefGoogle Scholar
Comodi, P., Drabek, M., Montagnoli, M., Rieder, M., Weiss, Z. and Zanazzi, P.F. (2003) Pressure–induced phase transition in synthetic trioctahedral Rb–mica. Physics and Chemistry of Minerals, 30, 198–205.CrossRefGoogle Scholar
Donnay, G., Morimoto, N., Takeda, H. and Donnay, J.D.H. (1964) Trioctahedral one–layer micas. 1. Crystal structure of a synthetic iron mica. Acta Crystallographica, 17, 1369–1373.CrossRefGoogle Scholar
Donovan, J.J. (1995) PROBE: PC–based data acquisition and processing for electron microprobes. Advanced Microbeam, Vienna, Ohio, USA.Google Scholar
Fechtelkord, M., Behrens, H., Holtz, F., Bretherton, J.L., Fyfe, C.A., Groat, L.A. and Raudsepp, M. (2003a) Influence of F content on the composition of Al–rich syntheticphlogopite: Part I. New information on structure and phase–formation from 29Si, 1H, and 19F MAS NMR spectroscopies. American Mineralogist, 88, 47–53.CrossRefGoogle Scholar
Fechtelkord, M., Behrens, H., Holtz, F., Bretherton, J.L., Fyfe, C.A., Groat, L.A. and Raudsepp, M. (2003b) Influence of F content on the composition of Al–rich syntheticphlogopite: Part II. Probing the structural arrangement of aluminum in tetrahedral and octahedral layers by 27Al MQMAS and 1H/19F−27Al HETCOR and REDOR experiments. American Mineralogist, 88, 1046–1054.CrossRefGoogle Scholar
Gianfagna, A., Scordari, F., Mazziotti–Tagliani, S., Ventruti, G. and Ottolini, L. (2007) Fluorophlogopite from Biancavilla (Mt. Etna, Sicily, Italy): Crystal structure and crystal chemistry of a new F–dominant analog of phlogopite. American Mineralogist, 92, 1601–1609.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results. The Canadian Mineralogist, 33, 907–911.Google Scholar
Kremenetsky, A.A., Beskin, S.M., Lehmann, B. and Seltmann, R. (2000) Economic geology of graniterelated ore deposits of Russia and other FSU countries; an overview. Pp. 3–56 in: Ore–bearing Granites of Russia and Adjacent Countries (Kremenetsky, A., Lehmann, B., Seltmann, R., editor). IAGOD Monograph Series, IMGRE, Moscow.Google Scholar
Lalonde, A.E., Rancourt, D.G. and Chao, G.Y. (1996) Fe–bearing trioctahedral micas from Mont Saint– Hilaire, Quebec, Canada. Mineralogical Magazine, 60, 447–460.CrossRefGoogle Scholar
Mason, R.A. (1992) Models of order and iron–fluorine avoidance in biotite. The Canadian Mineralogist, 30, 343–354.Google Scholar
Mellini, M., Weiss, Z., Rieder, M. and Drabek, M. (1996) Cs–ferriannite as a possible host for waste cesium; crystal structure and synthesis. European Journal of Mineralogy, 8, 1265–1271.Google Scholar
Munoz, J.L. (1984) F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. Pp. 469–493 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13, Mineralogical Society of America, Washington, D.C. Google Scholar
Papin, A., Sergent, J. and Robert, J.–L. (1997) Intersite OH–F distribution in an Al–rich synthetic phlogopite. European Journal of Mineralogy, 9, 501–508.CrossRefGoogle Scholar
Redhammer, G.J. and Roth, G. (2002) Single–crystal structure refinement and crystal chemistry of synthetictrioctahedral micas KM3(Al3+, Si4+)4O10(OH)2, where M = Ni2+, Mg2+, Co2+, Fe2+ or Al3+ .American Mineralogist, 87, 1464–1476.CrossRefGoogle Scholar
Redhammer, G.J. and Roth, G. (2004) The ferriannite KFe2+ 3(Al0.26Fe3+ 0.76Si3)O10(OH)2 at 100 and 270 K. Acta Crystallographica, C60, 33–36.Google Scholar
Robert, J.–L., Bény, J.–M., Della Ventura, G. and Hardy, M. (1993) Fluorine in micas: crystal–chemical control of the hydroxyl–fluorine distribution between trioctahedral and dioctahedral sites. European Journal of Mineralogy, 5, 7–18.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELX–97; a program for crystal structure determination. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2003) SADABS. University of Göttingen, Germany.Google Scholar
Shen, G. (2002) Suzhou fluorannite–rich granite: differentiation remnant of F–rich A–type granitic magma. Huanan Dizhi Yu Kuangchan, 2, 50–57.(in Chinese).Google Scholar
Shen, G., Lu, Q. and Xu, J. (2000) Fluorannite: a new mineral of the mica group from the western suburb of Suzhou, Zhejiang Province, China. Yanshi Kuangwuxue Zazhi, 19, 355–362.(in Chinese with English abstract).Google Scholar
Shen, Q., Li, Z., Wu, Z. and Lu, A. (2002) The Mössbauer spectrum of the new mineral fluorannite. European Journal of Mineralogy, 14, 1049–1052.Google Scholar
Signorelli, S., Vaggelli, G. and Romano, C. (1999) Preeruptive volatile (H2O, F, Cl and S) contents of phonoliticmagma s feeding the 3550 year old Avellino eruption from Vesuvius, southern Italy. Journal of Volcanology and Geothermal Research, 93, 237–256.CrossRefGoogle Scholar
Solodov, N.A., Semenov, E.I. and Burkov, V.V. (1987) Geological Reference Book on Heavy Lithophile Rare Metals. Nedra, Moscow, 439 pp (in Russian).Google Scholar