Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T03:47:10.144Z Has data issue: false hasContentIssue false

Characterisation and possible hazard of an atypical asbestiform sepiolite associated with aliphatic hydrocarbons from Sassello, Ligurian Apennines, Italy

Published online by Cambridge University Press:  08 October 2018

Roberto Giustetto*
Affiliation:
Department of Earth Sciences, University of Turin, via Valperga Caluso 35, 10125 Torino, Italy NIS Centre (Nanostructured Interfaces and Surfaces), via Pietro Giuria 7, 10125 Torino, Italy
Loredana Macaluso
Affiliation:
Department of Earth Sciences, University of Turin, via Valperga Caluso 35, 10125 Torino, Italy
Gloria Berlier
Affiliation:
NIS Centre (Nanostructured Interfaces and Surfaces), via Pietro Giuria 7, 10125 Torino, Italy Department of Chemistry, University of Turin, via Pietro Giuria 7, 10125 Torino, Italy
Yadolah Ganjkhanlou
Affiliation:
NIS Centre (Nanostructured Interfaces and Surfaces), via Pietro Giuria 7, 10125 Torino, Italy Department of Chemistry, University of Turin, via Pietro Giuria 7, 10125 Torino, Italy
Luca Barale
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, Via Valperga Caluso, 35, 10125 Torino, Italy
*
*Author for correspondence: Roberto Giustetto, Email: [email protected]

Abstract

An unusual occurrence of asbestiform sepiolite, filling veins in the antigorite serpentinites of the Voltri Unit exposed in a borrow pit (now reclaimed) in the Deiva forest, near Sassello, NW Italy, was investigated with an in-depth analytical approach aimed at studying its crystal-chemistry and structure and evaluating its possible hazards for human health. Optical microscopy and scanning electron microscopy (energy-dispersive spectroscopy mode) proved that these sepiolite fibres, apparently up to several cm long, are made up of bundles of thinner fibrils (or laths: average length > 100 µm; thickness ≈ 80 nm), with a composition consistent to that reported in the literature. The dehydration process was monitored through thermo-gravimetric analyses and Fourier-transform infrared spectroscopy, performed at increasing T; the latter, in particular, showed the presence of moderate amounts of aliphatic hydrocarbons – not yet identified thoroughly – associated with the sample. The crystal structure refinement with the Rietveld method showed no relevant difference from the literature models, although a peculiar distribution of zeolitic H2O molecules was observed. The geological context suggests that the Sassello sepiolite precipitated from hydrothermal fluids, which were saturated in Mg and silica by the interaction of the host serpentinites. The same setting favoured formation of abiotic hydrocarbons, by means of the Fischer–Tropsch reaction. The extremely long and flexible fibrils (length/width aspect ratio >> 3) of this sepiolite specimen could represent a serious hazard for human health if air dispersed and inhaled; also, its atypical association with hydrocarbons (only reported once previously) might even favour further fragmentation in thinner units.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Ahlrichs, J.L., Serna, C., Serratosa, J.M. (1975) Structural hydroxyls in sepiolite. Clays and Clay Minerals, 23, 119124.10.1346/CCMN.1975.0230207Google Scholar
Àlvarez, A., Santarén, J., Esteban-Cubillo, A. and Aparaicio, P. (2011) Current industrial applications of palygorskite and sepiolite. Pp. 281298 in: Developments in Palygorskite-Sepiolite Research, a New Outlook on these Nanomaterials (Galán, E. and Singer, A., editors). Elsevier B.V.10.1016/B978-0-444-53607-5.00012-8Google Scholar
Artioli, G. and Galli, E. (1994) The crystal structures of orthorhombic and monoclinic palygorskite. Material Science Forum, 166, 647652.10.4028/www.scientific.net/MSF.166-169.647Google Scholar
Bach, W., Banerjee, N.R., Dick, H.J.B. and Baker, E.T. (2002) Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16°E. Geochemistry, Geophysics, Geosystems, 3, 114.10.1029/2001GC000279Google Scholar
Bailey, S.W., Alietti, A., Brindley, G.W., Formosa, M.L.L., Jasmund, K., Konta, J., Mackenzie, R.C., Nagasawa, K., Rausell-Colom, R.A. and Zvyagin, B.B. (1980) Summary of recommendations of AIPEA nomenclature committee. Clays and Clay Minerals, 28, 7378.Google Scholar
Bellman, B., Muhle, H. and Ernst, H. (1997) Investigations on health-related properties of two sepiolite samples. Environmental Health Perspectives, 105, 10491052.Google Scholar
Belluso, E. and Sandrone, R. (1989) Occurrence of sepiolite in the marbles of the Dora Maira Massif (Italian Western Alps). Mineralogica et Petrographica Acta, 32, 6774.Google Scholar
Belluso, E., Compagnoni, R. and Ferraris, G. (1995) Occurrence of asbestiform minerals in the serpentinites of the Piemonte Zone, Western Alps. Pp. 5764 in: Giornata di studio in ricordo del Prof. Stefano Zucchetti, Politecnico di Torino (di Torino, Politecnico, editor).Google Scholar
Birsoy, R. (2002) Formation of sepiolite-palygorskite and related minerals from solution. Clays and Clay Minerals, 50, 736745.10.1346/000986002762090263Google Scholar
Bonatti, E., Craig Simmons, E., Breger, D., Hamlyn, P.R. and Lawrence, J. (1983) Ultramafic rock/seawater interaction in the oceanic crust: Mg-silicate (sepiolite) deposit from the Indian Ocean floor. Earth and Planetary Science Letters, 62, 229238.10.1016/0012-821X(83)90086-9Google Scholar
Boschetti, T., Etiope, G. and Toscani, L. (2013) Abiothic methane in the hyperalkaline springs of Genova, Italy. Procedia Earth and Planetary Science, 7, 248251.10.1016/j.proeps.2013.02.004Google Scholar
Boulart, C., Chavagnac, V., Monnin, C., Delacour, A., Ceuleneer, G. and Hoareau, G. (2012) Differences in gas venting from ultramafic-hosted warm springs: the example of Oman and Voltri ophiolites. Ofioliti, 38, 143156.Google Scholar
Brauner, K. and Preisinger, A. (1956) Structur und Enstehung des sepioliths. Tschermaks Mineralogische und Petrographische Mitteilungen, 6, 12.Google Scholar
Brell, J.M., Doval, M. and Caramés, M. (1985) Clay mineral distribution in the evaporitic Miocene sediments of the Tajo Basin, Spain. Mineralogica et Petrographica Acta, 29-A, 267276.Google Scholar
Brindley, G.W. (1959) X-ray and electron diffraction data for sepiolite. American Mineralogist, 44, 495500.Google Scholar
Bruni, J., Canepa, M., Chiodini, G., Cioni, R., Cipolli, F., Longinelli, A., Marini, L., Ottonello, G. and Vetuschi Zuccolini, M. (2002) Irreversible water-rock mass transfer accompanying the generation of the neutral, Mg-HCO3 and high-pH, Ca-OH spring waters of the Genoa province, Italy. Applied Geochemistry, 17, 455474.10.1016/S0883-2927(01)00113-5Google Scholar
Bukas, V.J., Tsampodimou, M., Gionis, V. and Chryssikos, G.D. (2013) Synchronous ATR infrared and NIR spectroscopy investigation of sepiolite upon drying. Vibrational Spectroscopy, 68, 5160.10.1016/j.vibspec.2013.05.009Google Scholar
Cannings, F.R. (1968) An Infrared study of hydroxyl groups in sepiolite. Journal of Physical Chemistry, 72, 10721074.10.1021/j100849a052Google Scholar
Capponi, G. and Crispini, L. (2002) Structural and metamorphic signature of Alpine tectonics in the Voltri Massif (Ligurian Alps, North Western Italy). Eclogae Geologicae Helvetiae, 95, 3142.Google Scholar
Capponi, G. and Crispini, L. (2008) Carta Geologica d'Italia alla scala 1.50.000 e Note Illustrative. Foglio 213–230 (Genova). APAT, Roma.Google Scholar
Capponi, G., Crispini, L., Piazza, M. and Amandola, L. (2001) Field constraints to the Mid-Tertiary kinematics of the Ligurian Alps. Ofioliti, 26, 409416.Google Scholar
Capponi, G., Crispini, L. and Federico, L. (Editors) (2013) Carta Geologica d'Italia alla scala 1.50.000 e Note Illustrative. Foglio 212 (Spigno Monferrato), parte ligure. Regione Liguria – Dipartimento Ambiente, Genova, Italy.Google Scholar
Chahi, A., Fritz, B., Duplay, J., Weber, F. and Lucas, J. (1997) Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco). Clays and Clay Minerals, 45, 378389.10.1346/CCMN.1997.0450308Google Scholar
Charlou, J.L., Fouquet, Y., Bougault, H., Donval, J.P., Etoubleau, J., Jean-Baptiste, P., Dapoigny, A., Appriou, P. and Rona, P.A. (1998) Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 62, 23232333.10.1016/S0016-7037(98)00138-0Google Scholar
Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P. and Holm, N. (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field, 36°14′N, MAR. Chemical Geology, 191, 345359.10.1016/S0009-2541(02)00134-1Google Scholar
Chavagnac, V., Monnin, C., Ceuleneer, G., Boulart, C. and Hoareau, G. (2013) Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochemistry, Geophysics, Geosystems, 14, 24962522.10.1002/ggge.20147Google Scholar
Chiari, G., Giustetto, R. and Ricchiardi, G. (2003) Crystal structure refinements of palygorskite and Maya Blue from molecular modeling and powder synchrotron diffraction. European Journal of Mineralogy, 15, 2133.10.1127/0935-1221/2003/0015-0021Google Scholar
Chiesa, S., Cortesogno, L., Forcella, F., Galli, M., Messiga, B., Pasquaré, G., Pedemonte, G.M., Piccardo, G.B. and Rossi, P.M. (1975) Assetto strutturale ed interpretazione geodinamica del gruppo di Voltri. Bollettino della Società Geologica Italiana., 94, 555581.Google Scholar
Ciliberto, E., Crisafulli, C., Manuella, F.C., Samperi, F., Scirè, S., Scribano, V., Viccaro, M. and Viscuso, E. (2009) Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diametres (Sicily): genesis in a serpentinite hydrothermal system. Chemical Geology, 258, 258268.10.1016/j.chemgeo.2008.10.029Google Scholar
Cipolli, F., Gambardella, B., Marini, L., Ottonello, G. and Vetuschi Zuccolini, M. (2004) Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers. Applied Geochemistry, 19, 787802.10.1016/j.apgeochem.2003.10.007Google Scholar
Cuevas, J, Leguey, S. and Ruiz, A.I. (2012) Evidence for the biogenic origin of sepiolite. Pp. 219238 in: Developments in Palygorskite-Sepiolite Research, a New Outlook on these Nanomaterials (Galán, E. and Singer, A., editors). Elsevier B.V.Google Scholar
d'Atri, A., Irace, A., Piana, F., Tallone, S., Bodrato, G. and Roz Gastaldi, M. (1997) Tettonica oligo-miocenica nell'Alto Monferrato (Bacino Terziario Piemontese) e nel settore nord-occidentale del Gruppo di Voltri (Acqui Terme-Cassinelle, AL). Atti Ticinensi di Scienze della Terra, Serie Speciale, 5, 85100.Google Scholar
d'Atri, A., Irace, A., Piana, F., Tallone, S., Varrone, D., Bellino, L., Fioraso, G., Cadoppi, P., Fusetti, E., Morelli, M., Lanteri, L.Paro, L., Piccini, C., Trenkwalder, S. and Violanti, D. (2016) Carta Geologica d'Italia alla scala 1.50.000 e Note Illustrative. Foglio 194 (Acqui Terme). ISPRA, Roma.Google Scholar
del Buey, P., Cabastrero, O., Arroyo, X. and Sanz-Montero, M.E. (2018) Microbially induced palygorskite-sepiolite authigenesis in modern hypersaline lakes (Central Spain). Applied Clay Science, 160, 921.10.1016/j.clay.2018.02.020Google Scholar
Dollase, W.A. (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. Journal of Applied Crystallography, 19, 267272.10.1107/S0021889886089458Google Scholar
Dos Anjos, C.W.D., Meunier, A., Guimaraès, E.M. and El Albani, A. (2010) Saponite-rich black shales and nontronite beds of the Permian Irati Formation: sediment sources and thermal metamorphism (Parana´ Basin, Brazil). Clays and Clay Minerals, 58, 606626.10.1346/CCMN.2010.0580503Google Scholar
Ehlmann, A.J., Sand, L.B. and Regis, A.J. (1962) Occurrences of sepiolite in Utah and Nevada. Economic Geology, 57(7), 10851094.10.2113/gsecongeo.57.7.1085Google Scholar
Etiope, G. and Sherwood Lollar, B. (2013) Abiotic methane on Earth. Reviews of Geophysics, 51, 276299.10.1002/rog.20011Google Scholar
Eugster, H.P. and Hardie, L.A. (1975) Sedimentation in an ancient playa-lake complex: the Wilkins Peak member of the Green River Formation of Wyoming. Bulletin of the Geological Society of America, 86, 319334.10.1130/0016-7606(1975)86<319:SIAAPC>2.0.CO;22.0.CO;2>Google Scholar
Farinha, A., Assunção, J. and Vinhas, J. (2011) Renal toxicity of inhaled aliphatic hydrocarbons: a case report of chronic interstitial nephropathy. Portuguese Journal of Nephrology & Hypertension, 25, 4346.Google Scholar
Federico, L., Crispini, L., Dabove, G.M., Piazza, M. and Capponi, G. (2016) Stratigraphic vs structural contacts in a late orogenic basin: the case of the Tertiary Piedmont Basin in the Sassello area (Ligurian Alps, Italy). Journal of Maps, 12, 959967.10.1080/17445647.2015.1100561Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2008) Crystallography of Modular Materials. IUCr. Oxford University Press, Oxford, UK.10.1093/acprof:oso/9780199545698.001.0001Google Scholar
Finger, L.W., Cox, D.E. and Jephcoat, A.P. (1994) A correction for powder diffraction peak asymmetry due to axial convergence. Journal of Applied Crystallography, 27, 892900.10.1107/S0021889894004218Google Scholar
Frost, R.L., Cash, G.A. and Kloprogge, J.T. (1998) ‘Rocky Mountain leather’, sepiolite and attapulgite – an infrared emission spectroscopic study. Vibrational Spectroscopy, 16, 173184.10.1016/S0924-2031(98)00014-9Google Scholar
Frost, R.L. and Ding, Z. (2003) Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Acta, 397, 119128.10.1016/S0040-6031(02)00228-9Google Scholar
Frost, R.L., Locos, O.B., Ruan, H. and Kloprogge, J.T. (2001) Near-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, 27, 113.10.1016/S0924-2031(01)00110-2Google Scholar
Frost, R.L., Kristòf, J. and Horvàth, E. (2009) Controlled rate thermal analysis of sepiolite. Journal of Thermal Analysis and Calorimetry, 98, 749755.10.1007/s10973-009-0201-6Google Scholar
Galán, E. and Pozo, M. (2011) Palygorskite and sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings. Pp. 131135 in: Developments in Palygorskite-Sepiolite Research, a New Outlook on these Nanomaterials (Galán, E. and Singer, A., editors). Elsevier B.V.Google Scholar
García-Rivas, J., Sánchez del Río, M., García-Romero, E. and Suárez, M. (2017) An insight in the structure of a palygorskite from Palygorskaja: Some questions on the standard model. Applied Clay Science, 148, 3947.Google Scholar
García-Romero, E. and Suarez, M. (2010) On the chemical composition of sepiolite and palygorskite. Clays and Clay Minerals, 58, 120.Google Scholar
García-Romero, E. and Suárez, M. (2013) Sepiolite-palygorskite: textural study and genetic considerations. Applied Clay Science, 86, 129144.Google Scholar
García-Romero, E. and Suárez, M. (2014) Sepiolite-palygorskite polysomatic series: Oriented aggregation as a crystal growth mechanism in natural environments. American Mineralogist, 99, 16531661.10.2138/am.2014.4751Google Scholar
Giustetto, R. and Chiari, G. (2004) Crystal structure refinement of palygorskite from neutron powder diffraction. European Journal of Mineralogy, 16, 521532.10.1127/0935-1221/2004/0016-0521Google Scholar
Giustetto, R. and Compagnoni, R. (2011) An unusual occurrence of palygorskite from Montestrutto, Sesia-Lanzo Zone, internal Western Alps (Italy). Clay Minerals, 46, 371385.10.1180/claymin.2011.046.3.371Google Scholar
Giustetto, R., Levy, D., Wahyudi, O., Ricchiardi, G. and Vitillo, J.G. (2011 a) Crystal structure refinement of a sepiolite/indigo Maya Blue pigment using molecular modelling and synchrotron diffraction. European Journal of Mineralogy, 23, 449466.Google Scholar
Giustetto, R., Seenivasan, K., Bonino, F., Ricchiardi, G., Bordiga, S., Chierotti, M.R. and Gobetto, R. (2011 b) Host/guest interactions in a sepiolite-based Maya Blue pigment: a spectroscopic study. Journal of Physical Chemistry C, 115, 1676416776.Google Scholar
Giustetto, R., Wahyudi, O., Corazzari, I. and Turci, F. (2011 c) Chemical stability and dehydration behaviour of a sepiolite/indigo Maya Blue pigment. Applied Clay Science, 52, 4150.Google Scholar
Giustetto, R., Seenivasan, K. and Belluso, E. (2014). Asbestiform sepiolite coated by aliphatic hydrocarbons from Perletoa, Aosta Valley Region (Western Alps, Italy): characterization, genesis and possible hazards. Mineralogical Magazine, 78, 919940.Google Scholar
Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill, New York, 384 pp.Google Scholar
Guggenheim, S. and Krekeler, M.P.S. (2011) The structure and microtextures of the palygorskite-sepiolite Group minerals. Pp. 1516 in: Developments in Palygorskite-Sepiolite Research, a New Outlook on these Nanomaterials (Galán, E. and Singer, A., editors). Elsevier B.V.Google Scholar
Hayashi, H., Otsuka, R. and Imai, N. (1969) Infrared study of sepiolite and palygorskite on heating. American Mineralogist, 54, 16131624.Google Scholar
Hodeau, J.L., Bordet, P., Anne, M., Prat, A., Fitch, A.N., Dooryhee, E., Vaughan, G. and Freund, A. (1998) Nine crystal multi-analyser stage for high-resolution powder diffraction between 6 and 40 keV. Proceedings of SPIE, 3448, 353.10.1117/12.332525Google Scholar
Imai, N. and Otsuka, R. (2000) Sepiolite and palygorskite in Japan. Pp. 211232 in: Palygorskite-Sepiolite: Occurrences, Genesis and Use (Singer, A. and Galàn, E., editors). Developments in Sedimentology, 37. Elsevier, Amsterdam.Google Scholar
International Agency for Research on Cancer [IARC], World Health Organization (1997) Sepiolite. Pp. 267282 in: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Silica, Some Silicates, Coal Dust and Para-Aramid Fibrils. 68, IARC Press.Google Scholar
International Agency for Research on Cancer [IARC], World Health Organization (2012). Arsenic, metals, fibres, and dusts. Pp. 501 in: Monographs on the Evaluation of Carcinogenic Risks to Humans; A Review of Human Carcinogens. 100 C, IARC Press.Google Scholar
Jeffrey, G.A. (1997) An Introduction to Hydrogen Bonding, Oxford University Press.Google Scholar
Jones, B.F. and Galán, E. (1988) Palygorkite and sepiolite. Pp. 631674 in: Hydrous Phyllosilicates (Bailey, S.W., editor), Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, DC.10.1515/9781501508998-021Google Scholar
Jung, S.M. and Grange, P. (2004) Characterization of the surface hydroxyl properties of sepiolite and Ti(OH)4 and investigation of new properties generated over physical mixture of Ti(OH)4-sepiolite. Applied Surface Science, 221, 167177.10.1016/S0169-4332(03)00868-7Google Scholar
Karakaya, M.C., Karakaya, N. and Temel, A. (2011) Mineralogical and geochemical characteristics and genesis of the sepiolite deposits at Polatli basin (Ankara, Turkey). Clays and Clay Minerals, 59, 286314.Google Scholar
Konn, C., Charlou, J.L., Donval, J.P., Holm, N.G., Dehairs, F. and Bouillon, S. (2009) Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chemical Geology, 258, 299314.10.1016/j.chemgeo.2008.10.034Google Scholar
Kovács-Pálffy, P., Kónya, P., Kalmár, J., Fehér, B. and Földvári, M. (2016) A hydrothermal sepiolite occurrence at Măgureni Hill, Preluca Veche (Maramureş County, Romania). Földtani Közlöny, 146, 321334.Google Scholar
Krekeler, M.P.S. and Guggenheim, S. (2009) Defects in microstructure in palygorskite-sepiolite minerals: a transmission electron microscopy (TEM) study. Applied Clay Science, 39, 98105.10.1016/j.clay.2007.05.001Google Scholar
Larson, A.C. and Von Dreele, R.B. (2007) GSAS – General Structure Analysis System. Los Alamos National Laboratory Report No. LAUR 86748.Google Scholar
Leguey, S., Ruiz de Leòn, D., Ruiz, A.I. and Cuevas, J. (2010) The role of biomineralization in the origin of sepiolite and dolomite. American Journal of Science, 310, 165193.10.2475/03.2010.02Google Scholar
Lòpez-Galindo, A., Viseras, C., Aguzzi, C. and Cerezo, P. (2011) Pharmaceutical and cosmetic uses of fibrous clays. Pp. 299324 in: Developments in Palygorskite-Sepiolite Research, a New Outlook on these Nanomaterials (Galán, E. and Singer, A., editors). Elsevier B.V. 10.1016/B978-0-444-53607-5.00013-XGoogle Scholar
Macdonald, A.H. and Fyfe, W.S. (1985) Rate of serpentinization in seafloor environments. Tectonophysics, 116, 123135.10.1016/0040-1951(85)90225-2Google Scholar
Manuella, F.C., Carbone, S. and Barreca, G. (2012) Origin of saponite-rich clays in a fossil serpentinite-hosted hydrothermal system in the crustal basement of the Hyblean plateau (Sicily, Italy). Clays and Clay Minerals, 60, 1831.Google Scholar
Marcaillou, C., Muñoz, M., Vidal, O., Parra, T. and Harfouche, M. (2011) Mineralogical evidence for H2 degassing during serpentinization at 300°C/300 bar. Earth and Planetary Science Letters, 303, 281290.Google Scholar
March, A. (1932) Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation. Zeitschrift für Kristallographie, 81, 285297.Google Scholar
Mayayo, M.J., Torres-Ruiz, J., Gonzalez-Lopez, J.M., Lopez-Galindo, A. and Bauluz, B. (1998) Mineralogical and chemical characterization of the sepiolite/Mg-smectite deposit at Mara (Calatayud basin, Spain). European Journal of Mineralogy, 10, 367383.Google Scholar
Mendelovici, E. (1973) Infrared study of attapulgite and HCl treated attapulgite. Clays and Clay Minerals, 21, 115119.Google Scholar
Mendelovici, E. and Portillo, D.C. (1976) Organic derivatives of attapulgite-I. Infrared spectroscopy and X-ray diffraction studies. Clays and Clay Minerals, 24, 177182.10.1346/CCMN.1976.0240405Google Scholar
Messiga, B. and Scambelluri, M. (1991) Retrograde P-T-t path for the Voltri Massif eclogites (Ligurian Alps, Italy): some tectonic implications. Journal of Metamorphic Geology, 9, 93109.10.1111/j.1525-1314.1991.tb00506.xGoogle Scholar
Mifsud, A., Garcia, I. and Corma, A. (1987) Thermal stability and textural properties of exchanged sepiolites. Pp. 392394 in: Proceedings Euroclay ’87. Sociedad Espanola de Arcilla, Sevilla, Spain.Google Scholar
Molli, G., Crispini, L., Malusà, M.G., Mosca, P., Piana, F. and Federico, L. (2010) Geology of the Western Alps-Northern Apennine junction area: a regional review. Journal of the Virtual Explorer, 36, 3.Google Scholar
Nagata, H., Shimoda, S. and Sudo, T. (1974) On dehydration of bound water in sepiolite. Clays and Clay Minerals, 22, 285293.10.1346/CCMN.1974.0220310Google Scholar
O'Driscoll, M. (1992) European cat litter. Absorbing market growth. Industrial Minerals, 299, 4665.Google Scholar
Ordoñez, S., Calvo, J.P., del Cura M.A., Garcìa, Zarza A.M., Alonso and Hoyos, M. (1991) Sedimentology of sodium sulphate deposits and special clays from the Tertiary Madrid Basin (Spain). Pp. 3955 in: Lacustrine Facies Analysis (Anadòn, P., Cabrera, L.I. and Keiths, K., editors). Special Publications of the International Association of Sedimentologists, vol. 13, Blackwell Scientific Publications, Oxford, UK.10.1002/9781444303919.ch2Google Scholar
Ovarlez, S., Giulieri, F., Chaze, A.M., Delamare, F., Raya, J. and Hirschinger, J. (2009) The incorporation of indigo molecules in sepiolite tunnels. Chemistry A European Journal, 15, 1132611332.10.1002/chem.200901482Google Scholar
Ovarlez, S., Giulieri, F., Delamare, F., Sbirrazzuoli, N. and Chaze, A.M. (2011) Indigo-sepiolite nanohybrids: temperature-dependent synthesis of two complexes and comparison with indigo-palygorskite systems. Microporous and Mesoporous Materials, 142, 371380.Google Scholar
Piana, F., d'Atri, A. and Orione, P. (1997) The Visone Formation: a marker of the Early Miocene tectonics in the Alto Monferrato domain (Tertiary Piemonte Basin, NW Italy). Memorie di Scienze Geologiche, 49, 145162.Google Scholar
Piana, F., Tallone, S., Cavagna, S. and Conti, A. (2006) Thrusting and faulting in metamorphic and sedimentary units of Ligurian Alps: an example of integrated field work and geochemical analyses. International Journal of Earth Sciences, 95, 413430.10.1007/s00531-005-0040-zGoogle Scholar
Piana, F., Fioraso, G., Irace, A., Mosca, P., d'Atri, A., Barale, L., Falletti, P., Monegato, G., Morelli, M., Tallone, S. and Vigna, G.B. (2017) Geology of Piemonte region (NW Italy, Alps-Apennines interference zone). Journal of Maps, 13, 395405.10.1080/17445647.2017.1316218Google Scholar
Piccardo, G.B. (1984) Le ofioliti del gruppo di Voltri, Alpi Liguri: caratteri primari ed interpretazione geodinamica. Memorie della Società Geologica Italiana, 28, 95114.Google Scholar
Post, J.E. and Heaney, P.J. (2008) Synchrotron powder diffraction study of the structure and dehydration behavior of palygorskite. American Mineralogist, 93, 667675.10.2138/am.2008.2590Google Scholar
Post, J.E., Bish, D.L. and Heaney, P.J. (2007) Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92, 9197.10.2138/am.2007.2134Google Scholar
Pott, F., Bellman, B., Muhle, H., Rödelsperger, K., Rippe, R.M., Roller, M. and Rosenbruch, M. (1990) Intraperitoneal injection studies for the evaluation of the carcinogenicity of fibrous phyllosilicates. Pp. 319329 in: Health Related Effects of Phyllosilicates (Bignon, J., editor). North Atlantic Treaty Organization Advanced Study Institute Series, Vol. G21, Ecological Sciences, Berlin West, Springer-Verlag.Google Scholar
Pott, F., Roller, M., Rippe, R.M., Germann, P.G. and Bellman, B. (1991) Tumors by the intraperitoneal and intrapleural routes and their significance for the classification of mineral fibres. Pp. 547565 in: Mechanisms in Fibre Carcinogenesis (Brown, R.C., Hoskins, J.A. and Johnson, N.F., editors). New York/London Plenum Press.10.1007/978-1-4684-1363-2_48Google Scholar
Preisinger, A. (1959) X-ray study of the structure of sepiolite. Clays and Clay Minerals, 6, 6167.10.1346/CCMN.1957.0060106Google Scholar
Proskurowski, G., Lilley, M.D. and Seewald, J.S. (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319, 604607.Google Scholar
Ruiz, R., del Moral, J.C., Pesquera, C., Benito, I. and González, F. (1996) Reversible folding in sepiolite: study by thermal and textural analysis. Thermochimica Acta, 279, 103110.10.1016/S0040-6031(96)90068-4Google Scholar
Sanchez del Rio, M., Garcia-Romero, E., Suarez, M., da Silva, I., Fuentes Montero, L. and Martinez-Criado, G. (2011) Variability in sepiolite: Diffraction studies. American Mineralogist, 96, 14431454.Google Scholar
Schwarzenbach, E.M., Lang, S.Q., Früh-Green, G.L., Lilley, M.D., Bernasconi, S.M. and Méhay, S. (2013) Sources and cycling of carbon in continental, serpentine-hosted alkaline springs in the Voltri Massif, Italy. Lithos, 177, 226244.Google Scholar
Sciré, S., Ciliberto, E., Crisafulli, C., Scribano, V., Bellatreccia, F. and Della Ventura, G. (2011) Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily. Lithos, 125, 956968.10.1016/j.lithos.2011.05.011Google Scholar
Serna, C., Ahlrichs, J.L. and Serratosa, J.M. (1975) Folding in sepiolite crystals. Clays and Clay Minerals, 23, 452457.Google Scholar
Solebello, L. (2009) Fibrous sepiolite use as an asbestos substitute: analytical basics. Microscopy Today, 15, 1819.10.1017/S155192950005567XGoogle Scholar
Spagnolo, C., Crispini, L. and Capponi, G. (2004) Late orogenic structural evolution in the Ligurian Alps: case history from the Voltri Group. Ofioliti, 29, 255.Google Scholar
Spagnolo, C., Crispini, L. and Capponi, G. (2007) Late structural evolution in an accretionary wedge: insights from the Voltri Massif (ligurian Alps, Italy). Geodinamica Acta, 20, 2135.Google Scholar
Suárez, M. and García-Romero, E. (2011) Advances in the crystal chemistry of sepiolite and palygorskite. Pp. 3365 in: Developments in Palygorskite-Sepiolite Research, a New Outlook on these Nanomaterials (Galán, E. and Singer, A., editors). Elsevier B.V.Google Scholar
Suárez, M. and García-Romero, E. (2012) Variability of the surface properties of sepiolite. Applied Clay Science, 67–68, 7282.10.1016/j.clay.2012.06.003Google Scholar
Taran, Y.A., Kliger, G.A. and Sevastianov, V.S. (2007) Carbon isotope effects in the open system Fischer–Tropsch synthesis. Geochimica et Cosmochimica Acta, 71, 44744487.Google Scholar
Thompson, P., Cox, D.E. and Hastings, J.B. (1987) Rietveld refinement of Debye-Scherrer synchrotron data from Al2O3. Journal of Applied Crystallography, 20, 7983.Google Scholar
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans les sédimentation carbonatée et épicontinentale tertiaire, Bassin de Paris, de Mormoiron et de Salìnelles (France), Ibel Ghassoul (Maroc). Mémoires de Sciences Géologiques, 49, pp. 195.Google Scholar
Ugliengo, P., Viterbo, D. and Chiari, G. (1993) MOLDRAW: molecular graphics on a personal computer. Kristallographie, 207, 9.Google Scholar
Velde, B. (editor)(1985) Clay minerals: a physico-chemical explanation of their occurrences. Pp. 187198 in: Developments in Sedimentology, 40, Elsevier, Nueva York.Google Scholar
Vitale Brovarone, A., Martinez, I., Elmaleh, A., Compagnoni, R., Chaduteau, C., Ferraris, C. and Esteve, I. (2017) Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nature Communications, 8, 14134.10.1038/ncomms14134Google Scholar
Weaver, C.E. (1984) Origin and geologic implications of the palygorskite deposits of SE United States. Pp. 3958 in: Palygorskite-Sepiolite: Occurrences, Genesis and Use (Singer, A. and Galàn, E., editors). Developments in Sedimentology, 37. Elsevier, Amsterdam.Google Scholar
Weir, M.R., Kuang, W., Facey, G.A. and Detellier, C. (2002) Solid-state nuclear magnetic resonance study of sepiolite and partially dehydrated sepiolite. Clays and Clay Minerals, 50, 240247.Google Scholar
Yalçin, H. and Bozkaya, Ö. (2004) Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara ophiolitic Mélange, central Anatolia, Turkey. Clays and Clay Minerals, 52, 227239.Google Scholar
Supplementary material: File

Giustetto et al. supplementary material

Giustetto et al. supplementary material 1

Download Giustetto et al. supplementary material(File)
File 214.8 KB