Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T19:53:25.715Z Has data issue: false hasContentIssue false

Use of organo-zeolitic fertilizer to sustain plant growth and stabilize metallurgical and mine-waste sites

Published online by Cambridge University Press:  05 July 2018

P. J. Leggo*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
B. Ledésert
Affiliation:
Sédimentologie et Géodynamique, FRE 2255, Université de Lille, France
*

Abstract

Land south of Lille, contaminated by heavy metals from local metal refining, has become the subject of intensive research. Topsoil from this area is used in the current work to investigate the growth behaviour of Spring wheat (Triticum aestivum L., cv. Paragon) when amended with organo-zeolitic fertilizer. Research has shown that soil substrates amended with ammoniated zeolitic tuff promote large populations of nitrifying bacteria which, as the result of ensuing enzyme reactions, produce available nitrogen together with H+ ions. It appears that the proton activity promotes cation mobilization allowing plant uptake to reach levels which, to a large extent, satisfy the nutritional requirements of the plant; only in the case of Zn is the level far exceeded. Very large differences in plant morphology occur when plants are grown in the amended substrates and the resulting development of large dense root systems, which have the ability to bind soil particles, are particularly important in their ability to reduce surface erosion and pollution from run-off.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bremner, P.R. and Schultze, L.E. (1995) Ability of clinoptilolite-rich tuffs to remove metal cations commonly found in acidic drainage. Pp. 397403 in: Natural Zeolites ‘93 (Ming, D.W. and Mumpton, F.A., editors). International Communications, Natural Zeolites, Brockport, New York.Google Scholar
Gérard, E., Morel, J.L and Sterckeman, T. (1997) Utilisation des méthodes isotopiques dans l’évaluation de la biodisponibilité du Cadmium des sols. Programme de Recherches Concertées – Etude d’un. secteur pollué par les métaux – Métaux polluants des. sols (Cd, Pb, Zn) et organismes vivants. Conseil Régional du Nord Pas de Calais, France.Google Scholar
Grelle, C., Fabre, M.C., Leprêtre, A. and Descamps, M. (1997) Population d’invertébrés en milieu natural. Programme de Recherches Concertées – Etude d’un secteur pollué par les métaux – Métaux polluants. des sols (Cd.Pb.Zn) et organismes vivants. Counseil Régional du Nord Pas de Calais, France.Google Scholar
Labrune, S. and Douay, F. (1997) Métaux lourds (Pb, Zn et Cd) et microflore du sol. Programme de. Researches concertées (FEDER) – Etude d’un secteur pollué par les métaux – Métaux polluants des sols (Cd. Pb. Zn) et organismes vivant. Counseil Régional du Nord Pas de Calais, France.Google Scholar
Ledésert, B. and Sobanska, S. (1998) Location of trace metals in the pososity of contaminated soils. 16ème congrès mondial de Sciences du Sol, Montpellier, 1998, p. 445.Google Scholar
Leggo, P.J. (2000) An investigation of plant growth in an organo-zeolitic substrate and its ecological significance. Plant and Soil., 219, 135–46.CrossRefGoogle Scholar
Marschner, H. (1995) Mineral Nutrition of Higher. Plants. 2nd edition. Academic Press, London.Google Scholar
Paul, E.A and Clark, F.E. (1989) Soil Microbiology and Biochemistry. 2nd edition. Academic Press, San Diego.CrossRefGoogle Scholar
Sobanska, S., Laboudigue, A., Ledésert, B., Wignacourt, J.P., Galloo, J.C. and Guillermo, R. (1998) Association of lead and zinc with iron-containing phases within a contaminated soil. Chemical and physical investigations. 16ème congrès mondial de Science du Sol, Montpellier, 1998, p. 449.Google Scholar
Sobanska, S., Ledésert, B., Deneele, D. and Laboudigue, A. (2000) Alteration in soils of slag particles resulting from lead smelting. Comptes Rendues de. l’Académie des Sciences, 331, 271–8.Google Scholar
Sterckeman, T., Douay, F., Proix, N. and Fourrier, H. (1999) Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Env. Poll., 107, 377–89.CrossRefGoogle Scholar
Tsitsishvili, G.V., Andronikashvili, T.G., Kirov, G.N. and Filizova, L.D. (1992) Pp. 147–81 in: Natural Zeolites (Burgess, J., editor). Ellis Horwood Series in Inoganic Chemistry, Chichester, UK.Google Scholar