Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T18:53:08.299Z Has data issue: false hasContentIssue false

The Role of Tholeiitic Magmatism in the English Lake District: Evidence from Dykes in Eskdale

Published online by Cambridge University Press:  05 July 2018

R. Macdonald
Affiliation:
Department of Environmental Science, University of Lancaster, Lancaster LA1 4YQ
D. Millward
Affiliation:
British Geological Survey, Windsor Court, Windsor Terrace, Newcastle upon Tyne NE2 4HB
B. Beddoe-Stephens
Affiliation:
British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA
J. Laybourn-Parry
Affiliation:
Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ

Abstract

Mafic dykes occur in close association with, and both cut and are cut by, the Eskdale granite in the south-western Lake District. The dykes range compositionally from magnesian basalt to andesite and are divided into two groups: (1) high-Fe-Ti rocks of tholeiitic affinity forming most of the dykes and (2) a lower-Fe-Ti group, comparable in composition to the lavas of the Borrowdale Volcanic Group. The dykes extend the range of tholeiitic magmatism in the Lakes into late Ordovician, and possibly Silurian times, and indicate that published plate tectonic models partly based on the distribution of magma types are perhaps over-simplified. The Eskdale dykes form one end of a spectrum of Lake District compositions from tholeiitic to calc-alkaline. All the magma types may have shared a common mantle source, their final composition reflecting residence times in the crust or LIL-enriched mantle.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, R.P., Rock, N.M.S., and Gaskarth, J.W. (1986) Geol. J. 21, 101-25.CrossRefGoogle Scholar
Dwerryhouse, A.R. (1909) Q. J. Geol. Soc. London, 65, 55-80.Google Scholar
Fettes, D.J., Graham, C.M., Harte, B., and Plant, J.A. (1986) J. Geol. Soc. London, 143, 453-64.CrossRefGoogle Scholar
Firman, R.J. (1978) In The Geology of the Lake District (F. Moseley, ed.) Yorkshire Geol. Soc., 146-63.Google Scholar
Fitton, J.G. (1971) Ph.D. Thesis, Durham University.Google Scholar
Fitton, J.G. and Hughes, D.J. (1970) Earth Planet Sci. Lett. 8, 22-38.CrossRefGoogle Scholar
Fitton, J.G. Thirlwall, M.F., and Hughes, D.J. (1982) In Andesites (R. S. Thorpe, ed.) John Wiley & Sons, 611-36.Google Scholar
Graham, C.M. (1976) J. Geol. Soc. London 132, 61-84.CrossRefGoogle Scholar
Graham, C.M. (1986) Scot. J. Geol. 22, 259-70.CrossRefGoogle Scholar
Graham, C.M. and Bradbury, H.J. (1981) Geol. Mag. 118, 27-37.CrossRefGoogle Scholar
Green, J.F.N. (1917) Proe. Geol. Assoc. 28, 1-30.Google Scholar
Hancox, E.G. (1934) Proc. Liverpool Geol. Soc. 16, 173-97.Google Scholar
Hunter, R.H. (1980) Ph.D. Thesis, Durham University.Google Scholar
IMA (1978) Mineral. Mag, 42, 533-63. and Am. Mineral. 63, 1023-52. (compiled by Leake, B. E.).CrossRefGoogle Scholar
Kokelaar, B.P. (1979) In The Caledonides of the British Isles-reviewed (Harris, A. L., Holland, C. H. and Leake, B. E., eds.) Geol. Soc. London Spec. Pub. 8, 59-16.Google Scholar
Macdonald, R., Gottfried, D., Farrington, M.J., Brown, F.W., and Skinner, N.G. (1981) Trans. Edin. Royal. Soc.: Earth Sci. 72, 57-74.CrossRefGoogle Scholar
Thorpe, R.S., Gaskarth, J.W., and Grindrod, A.R. (1985) Mineral. Mag. 49, 485-94.Google Scholar
Thorpe, R.S., Gaskarth, J.W., and Grindrod, A.R. Rock, N.M.S., Rundle, C.C., and Russell, O.J. (1986) Ibid. 50, 547-57.Google Scholar
Nutt, M.J.C. (1979) In The Caledonides qf the British Isles-reviewed ( Harris, A. L. C.H. Holland and B. E. Leake, eds.) Geol. Soc. London Spec. Pub. 8, 727-33.Google Scholar
O'Brien, C., Plant, J.A., Simpson, P.R., and Tarney, J. (1985) J. Geol. Soc. London 142, 11-39.-57.Google Scholar
Oliver, R.L. (1961) Q. J. Geol. Soc. London 117, 377-417.CrossRefGoogle Scholar
Plant, J.A., Watson, J.V., and Green, P.M. (1984) Proc. Royal Soc. London A395, 185-202.Google Scholar
Rock, N.M.S., Gaskarth, J.W., and Rundle, C.C. (1986) J. Geol. 94, 505-22.CrossRefGoogle Scholar
Macdonald, R., Walker, B.H., May, F., Peacock, J.D., and Scott, P. (1985) J. Geol. Soc. London 142, 643-61.Google Scholar
Rundle, C.C. (1979) Ibid. 136, 29-38.Google Scholar
Saunders, A.D., and Tarney, J. (1984) In Volcanic Processes in Marginal Basins (Kokelaar, B. P., Howells, M. F., and Roach, R. A., eds.) Geol. Soc. London Spec. Pub. 16, 59-76.Google Scholar
Soper, N.J., Webb, B.C., and Woodcock, N.H. (1987) Proc. Yorks. Geol. Soc. 46, 175-92.CrossRefGoogle Scholar
Thompson, R.N. (1982) Scot. J. Geol. 18, 491-07.Google Scholar
Morrison, M.A., and Parry, S.J. (1984) Phil.Trans. R. Soc. London, A310, 549-90.Google Scholar
Walker, E.E. (1904) Q. J. Geol. Soc. London, 60, 701-05.Google Scholar
Wright, T.L., and Peck, D.L. (1978) Prof. Paper US Geol. Surv. 1054-A.Google Scholar