Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:30:19.943Z Has data issue: false hasContentIssue false

A review of the potential for rare-earth element resources from European red muds: examples from Seydişehir, Turkey and Parnassus-Giona, Greece

Published online by Cambridge University Press:  02 January 2018

Éimear A. Deady*
Affiliation:
British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
Evangelos Mouchos
Affiliation:
Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
Kathryn Goodenough
Affiliation:
British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK
Ben J. Williamson
Affiliation:
Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
Frances Wall
Affiliation:
Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
*

Abstract

Rare-earth elements (REE) are viewed as 'critical metals' due to a complex array of production and political issues, most notably a near monopoly in supply from China. Red mud, the waste product of the Bayer process that produces alumina from bauxite, represents a potential secondary resource of REE. Karst bauxite deposits represent the ideal source material for REE-enriched red mud as the conditions during formation of the bauxite allow for the retention of REE. The REE pass through the Bayer Process and are concentrated in the waste material. Millions of tonnes of red mud are currently stockpiled in onshore storage facilities across Europe, representing a potential REE resource. Red mud from two case study sites, one in Greece and the other in Turkey, has been found to contain an average of ∼1000 ppm total REE, with an enrichment of light over heavy REE. Although this is relatively low grade when compared with typical primary REE deposits (Mountain Pass and Mount Weld up to 80,000 ppm), it is of interest because of the large volumes available, the cost benefits of reprocessing waste, and the low proportion of contained radioactive elements. This work shows that ∼12,000 tonnes of REE exist in red mud at the two case study areas alone, with much larger resources existing across Europe as a whole.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akcil, A., Tuncuk, A., Okudan, D. and Deveci, H. (2013) Waste to resource: evaluation of electrofiltration dust in Bayer Process. Pp. 7580 in: Proceedings of the World Resources Forum 2013. Davos, Switzerland, 6-9 October 2013.Google Scholar
Akinci, A. and Artir, R. (2008) Characterization of trace elements and radionuclides and their risk assessment in red mud. Materials Characterization, 59, 417421. CrossRefGoogle Scholar
Alonso, E., Sherman, A.M., Wallington, T.J., Everson, M.P., Field, F.R., Roth, R. and Kirchain, R.E. (2012) Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environmental Science and Technology, 46, 34063414. CrossRefGoogle ScholarPubMed
Anagnostou, C. (2010) Bauxite resource exploitation in Greece vs. Sustainability. Pp. 24252436 in: Bulletin of the Geological Society of Greece. 43. Proceedings of the 12th International Congress, Patras, Greece.Google Scholar
Anton, Á.D., Klebercz, O., Magyar, Á., Burke, I.T., Jarvis, A.P., Gruiz, K. andMayes, W.M. (2014) Geochemical recovery of the Torna—Marcal river system after the Ajka red mud spill, Hungary. Environmental Science: Processes & Impacts, 16, 26772685. Google ScholarPubMed
Atasoy, A. (2007) The comparison of the Bayer Process wastes on the base of chemical and physical properties. Journal of Thermal Analysis and Calorimetry, 90, 153158. CrossRefGoogle Scholar
Bárdossy, G. (1979) Growing significance of bauxites. Episodes, 2, 2225 CrossRefGoogle Scholar
Bárdossy, G. (1982) Karst Bauxites, Bauxite Deposits on Carbonate Rocks. Elsevier, 444 pp.Google Scholar
Bárdossy, G. and Pantó, G. (1973) Trace mineral and element investigation on bauxites by electron probe. Pp. 47-53 in: 3rd International Congress, ICSOBA, (International Committee for Study of Bauxite, Alumina & Aluminium). Nice, France.Google Scholar
Bárdossy, G., Panto, G. and Varhegyi, G. (1976) Rare metals in Hungarian bauxites and conditions of their utilization. Pp. 221-231 in: Travaux ICSOBA (International Committee for Study of Bauxite, Alumina & Aluminium). Zagreb, Yugoslavia.Google Scholar
Binnemans, K. and Jones, P.T. (2015) Rare Earths and the Balance Problem. Journal of Sustainable Metallurgy, 1, 2938. CrossRefGoogle Scholar
Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. and Buchert, M. (2013a) Recycling of rare earths: a critical review. Journal of Cleaner Production, 51, 122 CrossRefGoogle Scholar
Binnemans, K., Pontikes, Y., Jones, P.T., Van Gerven, T. and Blanpain, B. (2013b) Recovery of rare earths from industrial waste residues: a concise review. Pp. 191-205 in: Proceedings of the Third International Slag Valorisation Symposium. Leuven, Belgium.Google Scholar
Binnemans, K., Jones, P.T., Blanpain, B., Van Gerven, T. and Pontikes, Y (2015) Towards zero-waste valorisa¬tion of rare-earth-containing industrial process resi¬dues: a critical review. Journal of Cleaner Production, 99, 1738. CrossRefGoogle Scholar
Bland, W. and Rolls, D. (1998) Weathering: An Introduction to the Scientific Principles. Arnold, UK, 271 pp.Google Scholar
Bogatyrev, B.A., Zhukov, V.V. and Tsekhovsky, Y.G. (2009) Formation conditions and regularities of the distribution of large and superlarge bauxite deposits. Lithology and Mineral Resources, 44, 135151. CrossRefGoogle Scholar
Boni, M., Rollinson, G., Mondillo, N., Balassone, G. and Santoro, L. (2013) Quantitative mineralogical characterization of karst bauxite deposits in the southern Apennines, Italy. Economic Geology, 108,813833.CrossRefGoogle Scholar
Borra, C.R., Pontikes, Y., Binnemans, K. and Van Gerven, T (2015) Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 76, 2027 CrossRefGoogle Scholar
Bosák, P., Ford, D., Głazek, J. and Horáček, I. (1989) Paleokarst a systematic and regional review. Elsevier, 725 pp.Google Scholar
Bourbos, E., Giannopoulou, I., Karatonis, A., Panias, D. and Paspaliaris, I. (2014) Electrodisposition of rare earth metals in ionic liquids. Pp. 156-162 in: ERES2014: 1st European Rare Earth Resources Conference. Milos, Greece.Google Scholar
British Geological Survey (2012) Risk List 2012. British Geological Survey, Keyworth, UK.Google Scholar
British Geological Survey (2015) World mineral produc¬tion 2009-2013. British Geological Survey, Keyworth, UK.Google Scholar
CREEN [Canadian Rare Earth Elements Research Network] (2013) Progress Report Number 1, Canada.Google Scholar
Davris, P., Balomenos, E. and Panias, D. (2014) Leaching of rare earths from bauxite residues using imidazolium based ionic liquids. Pp. 241-252 in: ERES2014: 1st European Rare Earth Resources Conference. Milos, Greece.Google Scholar
Derevyankin, V.A., Porotnikova, T.P., Kocherova, E.K., Yumasheva, I.V. and Moiseev, V.E. (1981) Behaviour of scandium and lanthanum in the production of alumina from bauxite. Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 8689.Google Scholar
Doutsos, T., Koukouvelas, I.K. andXypolias, P. (2006) A new orogenic model for the External Hellenides. Pp. 507-520 in: Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, Special Publications, 260(i).Google Scholar
Economopoulou-Kyriakopoulou, N. (1991) A compara¬tive geochemical and mineralogical study ofbauxitic horizons in central Greece. PhD Thesis, National Technical University of Athens, Faculty of Mining Engineering and Metallurgy, Athen., 119 pp.Google Scholar
European Commission (2013) Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector. European Commission, 244 pp.Google Scholar
European Commission (2014) Report on critical raw materials for the EU Report of the ad hoc working group on defining critical raw materials. European Commission, 41 pp.Google Scholar
Fleet, A.J. (1984) Aqueous and sedimentary geochemistry of the rare earth elements. Pp. 343373 in: Rare Earth Element Geochemistry (P. Henderson, editor). Elsevier.CrossRefGoogle Scholar
Gamaletsos, P., Godelitsas, A., Chatzitheodoridis, E. and Kostopoulou, D. (2007) Laser μ-ramen investigation of Greek bauxites from the Parnassos-Ghiona active mining area. Pp. 736-746 in: Bulletin of the Geological Society of Greece, 40. Proceedings of the 11th International Congress, Athens, Greece.CrossRefGoogle Scholar
Gelencsér, A., Kováts, N., Turóczi, B., Rostási, Á., Hoffer, A., Imre, K., Nyiró-Kósa, I., Csákberényi-Malasics, D., Tóth, Á., Czitrovszky, A., Nagy, A., Nagy, S., Ács, A., Kovács, A., Ferincz, Á., Hartyáni, Z. and Pósfai, M. (2011) The red mud accident in Ajka (Hungary): Characterization and potential health effects of fugitive dust. Environmental Science and Technology, 45, 16081615. CrossRefGoogle ScholarPubMed
Goodenough, K.M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, É.A., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G., Arvanitidis, N., Eliopoulos, D.G., Shaw, R.A., Thrane, K. and Keulen, N. (2016) Europe's rare earth resource potential: an overview of metallogenic provinces and their geodynamic setting. Ore Geology Reviews, 72, 838856. CrossRefGoogle Scholar
Gow, N.N., Lozej, G.P. (1993) Bauxite. Geoscience Canada, 20, 916. Google Scholar
Graedel, T.E. (2014) Metal resources, use and criticality. Pp. 119 in: Critical Metals Handbook (G. Gunn, editor). First Edition, John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Gräfe, M. and Klauber, C. (2011) Bauxite residue issues: IV Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy, 108,4659 CrossRefGoogle Scholar
Hamada, T. (1986) Environmental management of bauxite residue. Pp. 109-117 in: Proceedings of the International Conference on Bauxite Tailings. The Jamaica Bauxite Institute, The University of the West Indies, Kingston, Jamaica.Google Scholar
Hanilçi, N. (2013) Geological and geochemical evolution of the Bolkardagi bauxite deposits, Karaman, Turkey: Transformation from shale to bauxite. Journal of Geochemical Exploration, 133,118137 CrossRefGoogle Scholar
Hatch, G.P. (2012) Dynamics in the global market for rare earths. Elements, 8, 341346 CrossRefGoogle Scholar
Hind, A.R., Bhargava, S.K. and Grocott, S.C. (1999) The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146,359374 CrossRefGoogle Scholar
Horkel, A. (2010) Notes on the geology and minerals resource potential of selected Turkish bauxite deposits. Jahrbuch der Geologischen Bundesanstalt, 150,343350 Google Scholar
Humphries, M. (2013) Rare Earth Elements: The Global Supply Chain. Congressional Research Service report no. 41347, United States Congress, 31 pp.Google Scholar
Institute of Geological Sciences (1978) World Mineral Statistics 1970—74. Institute of Geological Sciences, UK.Google Scholar
International Aluminium Institute (2014) Bauxite Residue Management: Best Practice. International Aluminium Institute, London., 32 pp.Google Scholar
International Marine Organisation (1972) International Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter. International Marine Organisation, London.Google Scholar
Johannesson, K.H., Lyons, W.B., Stetzenbach, K.J. and Byrne, R.H. (1995) The solubility control of rare earth elements in natural terrestrial waters and the signifi¬cance of PO4” and COl∼ in limiting dissolved rare earth concentrations: A review of recent information. Aquatic Geochemistry, 1, 157173 CrossRefGoogle Scholar
Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F. and Lyons, W.B. (1996) Rare earth element complexation behavior in circumneutral pH groundwaters: assessing the role of carbonate and phosphate ions. Earth Planet Science Letters, 139,305319 CrossRefGoogle Scholar
Jordens, A., Cheng, Y.P. and Waters, K.E. (2013) A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41,97114 CrossRefGoogle Scholar
Kalaitzidis, S., Siavalas, G., Skarpelis, N., Araujo, C.V. and Christanis, K (2010) Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment. International Journal of Coal Geology, 81,211226 CrossRefGoogle Scholar
Karadag, M.M., Kiipeli, §., Arýk, F., Ayhan, A., Zedef, Y and Döyen, A. (2009) Rare earth elemen. (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya — Southern Turkey). Chemie der Erde — Geochemistry, 69,143159 Google Scholar
Klauber, C.,Gräfe, M. and Power, G. (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy, 108,1132 CrossRefGoogle Scholar
Klyucharev, D.S., Volkova, N.M. and Comyn, M.F. (2013) The problems associated with using non-conventional rare-earth minerals. Journal of Geochemical Exploration, 133,138148 CrossRefGoogle Scholar
Laskou, M. (1991) Concentrations of rare earths in Greek Bauxites. Acta Geologica Hungarica, 34,395404 Google Scholar
Laskou, M. (2005) Pyrite-rich bauxites from the Parnassos-Ghiona zone, Greece. Pp. 10071010 in: 8th SGA Meeting, Mineral Deposits Research Meeting the Global Challenge, Beijing, August 1821.CrossRefGoogle Scholar
Laskou, M. and Andreou, G. (2003) Rare earth elements distribution and REE-minerals from the Parnassos-Ghiona bauxite deposits, Greece. Pp. 8992 in: Mineral Exploration and Sustainable Development: Proceedings of the Seventh Biennial SGA Meeting, Athens, Greece, 24-28 August 2003, Volume 2.Google Scholar
Laskou, M. and Economou-Eliopoulos, M. (2007) The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. Journal of Geochemical Exploration, 93, 6777 CrossRefGoogle Scholar
Laskou, M. and Economou-Eliopoulos, M. (2013) Bio-mineralization and potential biogeochemical pro¬cesses in bauxite deposits: Genetic and ore quality significance. Mineralogy and Petrology, 107, 471–186.CrossRefGoogle Scholar
Laskou, M., Economou-Eliopoulos, M. and Mitsis, I. (2010) Bauxite ore as an energy source for bacteria driving iron-leaching and bio-mineralization. Hellenic Journal of Geosciences, 45,163174 Google Scholar
Lymperopoulou, T. (1996) Determination and extraction of rare earth elements from bauxites and red mud. Unpublished doctoral thesis, National Technical University of Athens (NTUA), Athens.Google Scholar
Maksimovic, Z. and Pantó, G. (1978) Minerals of the rare-earth elements in karstic bauxites: synchysite-(Nd), a new mineral from Grebnik deposit. Pp. 540-552 in: 4th International Congress, ICSOBA, (International Committee for Study of Bauxite, Alumina & Aluminium), Athens, Greece.Google Scholar
Maksimovic, Z. and Panto, G. (1991) Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma, 51, 93109. CrossRefGoogle Scholar
Maksimovic, Z. and Pantó, G. (1996) Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits. Pp. 257259 in: Rare Earth Minerals, Chemistry, Origin and Ore Deposits. Volume 7. (F.A. Jones, F. Wall and C.T. Williams, editors). First Edition. Springer Science & Business Media.Google Scholar
Maksimovic, Z. and Roaldset, E. (1976) Lanthanide elements in some Mediterranean karstic bauxite deposits. Pp. 199-220 in: Travaux ICSOBA, (International Committee for Study of Bauxite, Alumina & Aluminium), Zagreb, Croatia.Google Scholar
Mameli, P., Mongelli, G., Oggiano, G. and Dinelli, E. (2007) Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): Insights on conditions of formation and parental affinity. International Journal of Earth Sciences, 96,887902 CrossRefGoogle Scholar
Marmolejo-Rodríguez, A.J., Prego, R., Meyer-Willerer, A., Shumilin, E. and Sapozhnikov, D. (2007) Rare earth elements in iron oxy—hydroxide rich sediments from the Marabasco River-Estuary System (pacific coast of Mexico). REE affinity with iron and aluminium. Journal of Geochemical Exploration, 94,4351 CrossRefGoogle Scholar
McDonough, W F. and Sun, S.-s. (1995) The composition of the Earth. Chemical Geology, 120,223253 CrossRefGoogle Scholar
Melfos, V and Voudouris, P.C. (2012) Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals, 2, 300317.CrossRefGoogle Scholar
Milačič, R., Zuliani, T and Ščančar, J. (2012) Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures. Science of the Total Environment, 426,359365.CrossRefGoogle ScholarPubMed
Mitsubishi Electric Corporation (2014) There are not enough rare earth elements for cutting-edge industries. (http://www.mitsubishielectric.com/company/ environment/ecotopics/rareearth/why/index.html accessed February 2015).Google Scholar
Mondillo, N., Balassone, G., Boni, M. and Rollinson, G. (2011) Karst bauxites in the Campania Apennines (southern Italy): A new approach. Periodico di Mineralogia, 80, 407432. Google Scholar
Mongelli, G. (1997) Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology, 140,6979 CrossRefGoogle Scholar
Mongelli, G. and Acquafredda, P. (1999) Ferruginous concretions in a Late Cretaceous karst bauxite: composition and conditions of formation. Chemical Geology, 158, 315320. CrossRefGoogle Scholar
Mongelli, G., Boni, M., Buccione, R. and Sinisi, R. (2014) Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities. Ore Geology Reviews, 63,921.CrossRefGoogle Scholar
Elsevier, B.V. Nesbitt, H.W. (1979) Mobility and fractionation of rare earth elements during weathering of a granidiorite. Nature, 279,206210 Google Scholar
O'Driscoll, M. (2011) Elmin bauxite sees the light. Industrial Minerals, 3, 4245 Google Scholar
Ochsenkühn-Petropoulou, M.,Ochsenkühn, K. and Luck, J. (1991) Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites. Spectrochimica Acta Part B: Atomic Spectroscopy, 46,5165 CrossRefGoogle Scholar
Ochsenkühn-Petropulu, M., Lyberopulu, T and Parissakis, G. (1994) Direct determination of lanthanides, yttrium and scandium in bauxites and red mud from alumina production. Analytica Chimica Acta, 296,305313 CrossRefGoogle Scholar
Ochsenkühn-Petropulu, M., Lyberopulu, T and Parissakis, G. (1995) Selective separation and deter¬mination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Analytica Chimica Acta, 315,231237 CrossRefGoogle Scholar
Ochsenkühn-Petropulu, M., Lyberopulu, T., Ochsenkühn, K.M. and Parissakis, G. (1996) Recovery of lantha¬nides and yttrium from red mud by selective leaching. Analytica Chimica Acta, 319,249254 CrossRefGoogle Scholar
Ochsenkühn-Petropulu, M., Hatzilyberis, K.S., Mendrinous L.N. and Salmas, C.E. (2002) Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Industrial and Engineering Chemistry Research, 41,57495801.Google Scholar
Ohta, A. and Kawabe, I. (2001) REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 . Geochimica et Cosmochimica Acta, 65, 695703. CrossRefGoogle Scholar
Okay, A.I. (2008) Geology of Turkey: A synopsis. Anschnitt, 21,1942 Google Scholar
Orbite Aluminae Incorporated (2015) Process for Extracting Aluminum from Aluminous Ores. PatentNo. 14/371,364.Google Scholar
Öztürk, H., Hein, J., Hanilçi, N. (2002) Genesis of the Dogankuzu and Mortas bauxite deposits, Taurides, Turkey: Separation of Al, Fe, and Mn and implications for passive margin metallogeny. Economic Geology, 97, 10631077. CrossRefGoogle Scholar
Patterson, S.H. (1967) Bauxite reserves and potential aluminum resources of the World. 184 pp. Bulletin No. 1228. US Government Print Office, USA.Google Scholar
Petrascheck, W.E. (1989) The genesis of allochthonous karst-type bauxite deposits of southern Europe. Mineralium Deposita, 81, 7781. Google Scholar
Petrascheck, W.E. and Mack, E. (1978) Palaeogeographie, verteilung und qualität der bauxite im Parnass-Kjona Gebirge. Pp. 526539 in: 4th International Congress, ICSOBA, (International Committee for Study of Bauxite, Alumina & Aluminium).Athens, Greece.Google Scholar
Power, G., Gräfe, M. and Klauber, C. (2011) Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy, 108,3345 CrossRefGoogle Scholar
Qu, Y and Lian, B. (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresource Technology, 136,1623.CrossRefGoogle ScholarPubMed
Ritter, S. (2014) Making the most of red mud. Chemical and Engineering News, 92, 3335 Google Scholar
Robertson, A.H.F.. and Mountrakis, D. (2006) Tectonic development of the Eastern Mediterranean region: an introduction. Pp. 19 in: Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, Special Publications, 260(1).CrossRefGoogle Scholar
RUSAL (2014) UC RUSAL launches pilot unit at Urals aluminium smelter for the production of scandium concentrate. [press release] (http://www.rusal.ru/en/ press-center/news_details.aspx?id= 10866= 13 accessed February 2015)Google Scholar
Sengör, A.M.C.. and Yilmaz, Y (1981) Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181241. CrossRefGoogle Scholar
Simandl, G.J. (2014) Geology and market-dependent significance of rare earth element resources. Mineralium Deposita, 49, 889904. CrossRefGoogle Scholar
Smirnov, D.I. and Molchanova, T.V. (1997) The investi¬gation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy, 45, 249259. CrossRefGoogle Scholar
Temur, S., Orhan, H. and Deli, A. (2009) Geochemistry of the limestone of Mortas Formation and related terra rossa, Seydisehir, Konya, Turkey. Geochemistry International, 47, 6793. CrossRefGoogle Scholar
Tsakanika, L.V., Ochsenkühn-Petropoulou, M.T. and Mendrinos, L.N. (2004) Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC. Analytical and Bioanalytical Chemistry, 379,796802 CrossRefGoogle ScholarPubMed
Tsirambides, A. and Filippidis, A. (2012) Metallic mineral resources of Greece. Central European Journal of Geosciences, 4, 641650 Google Scholar
Valeton, I., Biermann, M., Reche, R. and Rosenberg, F. (1987) Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews, 2, 359404. CrossRefGoogle Scholar
Vukotic, P. (1983) Determination of rare earth elements in bauxites by instrumental neutron activation ana¬lysis. Journal of Radioanalytical Chemistry, 78, 105115. CrossRefGoogle Scholar
Wagh, A.S. and Pinnock, W.R. (1987) Occurrence of scandium and rare earth elements in Jamaican bauxite waste. Economic Geology, 82, 757761 CrossRefGoogle Scholar
Wall, F. (2014) Rare earth elements. Pp. 312-339 in: Critical Metals Handbook (G. Gunn, editor). First Edition. John Wiley & Sons, Ltd. Google Scholar
Supplementary material: File

Deady et al. supplementary material

Supplementary Table

Download Deady et al. supplementary material(File)
File 59.9 KB