Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T08:13:27.210Z Has data issue: false hasContentIssue false

Ba-rich celestine: new data and crystal structure refinement

Published online by Cambridge University Press:  05 July 2018

M. F. Brigatti
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, Largo S. Eufemia 19, 1-41100, Modena, Italy
E. Galli
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, Largo S. Eufemia 19, 1-41100, Modena, Italy
L. Medici
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, Largo S. Eufemia 19, 1-41100, Modena, Italy

Abstract

A Ba-rich celestine (Sr0.87Ba0.13SO4) filling cavities of volcanoclastic rocks from Montecchio Maggiore (Vicenza, Italy) was studied. The role of the Ba content in the mineral was determined using X-ray powder data, single crystal X-ray refinement, thermal and chemical analyses. The unit cell parameters (obtained by single crystal diffraction) are a = 8.408, b = 5.372, c = 6.897 Å, and the refinement in the space group Pnma (Z = 4) gives the final R value of 0.039. The average (Sr,Ba)-oxygen bond length is 2.842 Å and agrees with an occupancy of Sr 87% and Ba 13%. Individual bond lengths (Sr,Ba)-O and bond strength calculations confirm that all twelve interactions are significant and define an irregular array around the cation.

Type
Crystal Structure
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A. (1976) The use of structure factors in the refinement of unit cell parameters from powder diffraction data. J. Appl. Crystallogr. 9, 373-4.CrossRefGoogle Scholar
Baur, W.H. (1970) Bond length variation and distorted coordination polyhedra in inorganic crystals. Trans. Amer. Crystallogr. Assoc. 6, 129-55.Google Scholar
Berman, H. (1939) A torsion microbalance for the determination of specific gravities of minerals.. Amer. Mineral. 24, 434-40.Google Scholar
Billows, E. (1920) Le zeoliti e gli altri minerali di Montecchio Maggiore nel Vicentino. Atti dell'Accad. Veneto-Trentina-Istriana Vol. XI, pp. 123.Google Scholar
Boscardin, M. and Sovilla, S. (1988) I1 giacimento mineralogico di S. Pietro in Montecchio Maggiore (Vicenza). Ed. Comune di Montecchio Maggiore, Museo Civico “G. Zannato”.Google Scholar
Bostrom, K., Frazer, J. and Blankenburg, J. (1968) Subsolidus phase relations and lattice constants in the system BaSO4-SrSO4-PbSO4 . Ark. Mineral, Geol. 4, 477-85.Google Scholar
Bouhlel, S. (1985) Composition chimique, fréquence et distribution des minéraux de la série barytinecelestite darts les gisements de fluorine de Hammam Jédidi et Hammam Zriba-Jébel Guébli (Tunisie nord-orientale). Bull. Mineral. 108, 403-20.Google Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bondstrength– bond-length curves for oxides. Acta Crystallogr., A29, 266-82.CrossRefGoogle Scholar
Brown, I.D. and Wu, K.K. (1976) Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr., B32, 1957-9.CrossRefGoogle Scholar
Browner, E. (1973) Synthesis of barite, celestine and barium-strontium sulfate solid solution crystals.. Geochim. Cosmochim. Acta 37, 155-8.CrossRefGoogle Scholar
Burkhard, A. (1973) Optical and X-ray investigations in the system BaSO4-SrSO4 . Schweiz. Mineral. Petrogr. Mitt. 53, 185-97.Google Scholar
Busing, W.R., Martin, K.O. and Levy, H.S. (1962) ORFLS, a Fortran crystallographic least-squares program. U.S. National Technical Information Service, ORNL-TM-305.Google Scholar
Garske, D. and Peacor, D.R. (1965) Refinement of the structure of celestite SrSO4 . Zeit. Kristallogr., 121, 204-10.CrossRefGoogle Scholar
Goldish, E. (1989) X-ray diffraction analysis of barium strontium sulfate (barite-celestite) solid solutions.. Powder Diffraction 4, 214-6.CrossRefGoogle Scholar
Hanor, J.S. (1968) Frequency distribution of compositions in the barite-celestite series. Amer. Mineral., 53, 1215-22.Google Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Anhydrous sulphates. I: Refinement of the crystal structure of celestite with an appendix on the structure of thenardite. Canad. Mineral., 13, 181-7.Google Scholar
Hill, R.J. (1977) A further refinement of the barite structure. Canad. Mineral., 15, 522-6.Google Scholar
Ibers, J.A. and Hamilton, W.C. Eds. (1974) International tables for X-ray crystallography, vol IV, 366 pp. Kynoch Press, Birmingham, U.K. Google Scholar
James, R.W. and Wood, W.A. (1925) The crystal structure of baryte, celestite and anglesite. Proc. Roy. Soc. London, 109A, 598-620.Google Scholar
Kunz, M., Armbruster, T., Lager, G.A., Schultz, A.J., Goyette, R.J., Lottermoser, W. and Amthauer, G. (1991) Fe, Ti Ordering and Octahedral Distortions in Acentric Neptunite: Temperature Dependent X-ray and Neutron Structure Refinements and Mössbauer Spectroscopy. Phys. Chem. Minerals 18, 199213.CrossRefGoogle Scholar
Miyake, M., Minato, I., Morikawa, H., and lwai, S. (1978) Crystal structures and sulphate constants of barite, celestite, and anglesite. Amer. Mineral., 63, 506-10.Google Scholar
Pasero, M. and Davoli, P. (1987) Structure of hashemite, Ba(Cr,S)O4. Acta Crystallogr., C43, 1467-9.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” Φ(ρZ) procedure for improved quantitative microanalysis.. Micr. Anal. 1985, 104-6.Google Scholar
Renner, B. and Lehmann, G. (1986) Correlation of angular and bond length distortions in TO4 units in crystals. Zeits. Kristallogr., 175, 4359.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172, 567-70.CrossRefGoogle ScholarPubMed
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751-67.CrossRefGoogle Scholar
Sheldrick, G.M. (1976) SHELX76. Program for crystal structure determination. University of Cambridge, England.Google Scholar
Sheldrick, G.M. (1986) SHELXS-86:Fortran-77 program for the solution of crystal structures from diffraction data. Institut für Anorganische Chemie der Universität Göttingen, Germany.Google Scholar
Siemens, (1993) XSCANS System – Technical reference. Siemens Analytical X-ray Instruments.Google Scholar