Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T04:52:03.487Z Has data issue: false hasContentIssue false

Zernike Phase Contrast Electron Microscopy with a Spherically Corrected Foil Lens

Published online by Cambridge University Press:  02 July 2010

Dieter Typke*
Affiliation:
Life Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mailstop Donner, Berkeley, CA 94720, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A lens system is proposed that not only provides spherical correction of the objective lens by charges that are induced on a thin foil, in the way proposed in a paper by Otto Scherzer [Optik56(2), 133–147, 1980], but also provides Zernike phase contrast by means of an appropriate phase shift of the scattered electrons within the foil. This system has the potential to provide strong phase contrast from very low spatial frequencies to frequencies above 1/(100 pm).

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Danev, R., Glaeser, R.M. & Nagayama, K. (2009). Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109(4), 312325.CrossRefGoogle ScholarPubMed
Danev, R. & Nagayama, K. (2006). Applicability of thin film phase plates in biological electron microscopy. Biophysics 2, 3543.CrossRefGoogle ScholarPubMed
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1), 5360.CrossRefGoogle Scholar
Hibino, M. & Maruse, S. (1976). Correction of the spherical aberration of a magnetic lens with a foil lens. J Electron Microsc (Tokyo) 25, 229236.Google Scholar
Hoch, H., Kasper, E. & Kern, D. (1976). Third order spherical aberration and axial chromatic aberration of rotationally symmetric electron lenses with spherically curved charged transparent foils. Optik 46, 463473.Google Scholar
Meyer, W. (1961). Das praktische Auflösungsvermögen von Elektronenmikroskopen. Optik 18, 101114.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.CrossRefGoogle Scholar
Scherzer, O. (1970). Die Strahlenschädigung der Objekte als Grenze für die hochauflösende Elektronenmikroskopie. Berichte der Bunsengesellschaft für physikalische. Ber Bunsenges Phys Chemie 74(11), 11541167.CrossRefGoogle Scholar
Scherzer, O. (1980). Eine sphärisch korrigierte Folien-Linse für die Phasenmikroskopie mit Elektronen. Optik 56(2), 133147.Google Scholar
Typke, D. (1972a). Sphärische und chromatische Korrektur von Elektronenlinsen mit Hilfe von Influenzladungen, I. Optik 34, 573594.Google Scholar
Typke, D. (1972b). Sphärische und chromatische Korrektur von Elektronenlinsen mit Hilfe von Influenzladungen, II. Optik 36, 124138.Google Scholar