Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T02:44:03.790Z Has data issue: false hasContentIssue false

Z Dependence of Electron Scattering by Single Atoms into Annular Dark-Field Detectors

Published online by Cambridge University Press:  04 November 2011

Michael M.J. Treacy*
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A simple parameterization is presented for the elastic electron scattering cross sections from single atoms into the annular dark-field (ADF) detector of a scanning transmission electron microscope (STEM). The dependence on atomic number, Z, and inner reciprocal radius of the annular detector, q0, of the cross section σ(Z,q0) is expressed by the empirical relation

where A(q0) is the cross section for hydrogen (Z = 1), and the detector is assumed to have a large outer reciprocal radius. Using electron elastic scattering factors determined from relativistic Hartree-Fock simulations of the atomic electron charge density, values of the exponent n(Z,q0) are tabulated as a function of Z and q0, for STEM probe sizes of 1.0 and 2.0 Å.

Comparison with recently published experimental data for single-atom scattering [Krivanek et al. (2010). Nature464, 571–574] suggests that experimentally measured exponent values are systematically lower than the values predicted for elastic scattering from low-Z atoms. It is proposed that this discrepancy arises from the inelastic scattering contribution to the ADF signal. A simple expression is proposed that corrects the exponent n(Z,q0) for inelastic scattering into the annular detector.

Type
Software and Techniques Development
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amali, A. & Rez, P. (1997). Theory of lattice resolution in high-angle annular dark-field images. Microsc Microanal 3, 2846.CrossRefGoogle Scholar
Amali, A., Rez, P. & Cowley, J.M. (1997). High angle annular dark field imaging of stacking faults. Micron 28, 8994.CrossRefGoogle Scholar
Cosslett, V.E. (1965). Possibilities and limitations for the differentiation of elements in the electron microscope. In Quantitative Electron Microscopy (Proceedings at Armed Forces Inst. Path., Washington, DC, 1964), Bahr, G.F. & Zeitler, E.H. (Eds.), pp. 271281. Baltimore, MD: The Williams and Wilkins Company.Google Scholar
Crewe, A.V., Langmore, J.P. & Isaacson, M.S. (1975). Resolution and contrast in the STEM. In Physical Aspects of Electron Microscopy and Microbeam Analysis, Siegel, B.M. & Beaman, D.R. (Eds.), pp. 4762. NY: John Wiley & Sons.Google Scholar
Crewe, A.V., Wall, J. & Langmore, J.P. (1970). Visibility of single atoms. Science 168, 13381340.CrossRefGoogle ScholarPubMed
Donald, A.M. & Craven, A.J. (1979). Study of grain-boundary segregation in Cu-Bi alloys using STEM. Philos Mag A 39, 111.CrossRefGoogle Scholar
Doyle, P.A. & Turner, P.S. (1968). Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallogr A 24, 390397.CrossRefGoogle Scholar
Gibson, J.M. & Howie, A. (1979). Investigation of local-structure and composition in amorphous solids by high-resolution electron-microscopy. Chem Scripta 14, 109116.Google Scholar
Howie, A. (1979). Image-contrast and localized signal selection techniques. J Microsc 117, 1123.CrossRefGoogle Scholar
Humphreys, C.J., Hart-Davis, A. & Spencer, J.P. (1974). Optimizing the signal/noise in the dark field imaging of single atoms. In Proc. 8th Intl. Congress on Electron Microscopy, Sanders, J.V. & Goodchild, D.J. (Eds.), pp. 248249. Canberra, Australia: Australian Academy of Science.Google Scholar
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York, London: Plenum Press.CrossRefGoogle Scholar
Kirkland, E.J., Loane, R.F. & Silcox, J. (1987). Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 7796.CrossRefGoogle Scholar
Krivanek, O., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010a). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Dellby, N., Murfitt, M.F., Chisholm, M.F., Pennycook, T.J., Suenaga, K. & Nicolosi, V. (2010b). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935945.CrossRefGoogle Scholar
Langmore, J.P., Wall, J. & Isaacson, M.S. (1973). Collection of scattered electrons in dark field electron-microscopy. 1. Elastic-scattering. Optik 38, 335350.Google Scholar
Lenz, F. (1954). Zur streuung mittelschneller elektronen in kleinst winkel. Z Naturforsch 9A, 185204.CrossRefGoogle Scholar
Loane, R.F., Kirkland, E.J. & Silcox, J. (1986). Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images. Acta Crystallogr A 44, 912927.CrossRefGoogle Scholar
Molina, S.I., Sales, D.L., Galindo, P.L., Fuster, D., González, Y., Alén, B., González, L., Varela, M. & Pennycook, S.J. (2009). Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 109, 172176.CrossRefGoogle ScholarPubMed
Motz, J.W., Olsen, H. & Koch, H.W. (1964). Electron scattering without atomic or nuclear excitation. Rev Modern Phys 36, 881928.CrossRefGoogle Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.CrossRefGoogle ScholarPubMed
Nellist, P.D. & Pennycook, S.J. (1996). Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413415.CrossRefGoogle Scholar
Pennycook, S.J., Berger, S.J. & Culbertson, R.J. (1986). Elemental mapping with elastically scattered electrons. J Microsc 144, 229249.CrossRefGoogle Scholar
Pennycook, S.J. & Boatner, L.A. (1988). Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565567.CrossRefGoogle Scholar
Pennycook, S.J. & Jesson, D.E. (1990). High-resolution incoherent imaging of crystals. Phys Rev Lett 64, 938941.CrossRefGoogle ScholarPubMed
Pennycook, S.J., Varela, M., Lupini, A.R., Oxley, M.P. & Chisholm, M.F. (2009). Atomic-resolution spectroscopic imaging: Past, present and future. J Elec Microsc 58, 8797.CrossRefGoogle ScholarPubMed
Rez, D., Rez, P. & Grant, I. (1994). Dirac-Fock calculations of X-ray scattering factors and contributions to the mean inner potential for electron scattering. Acta Crystallogr A 50, 481497.CrossRefGoogle Scholar
Rice, S.B., Koo, J.Y., Disko, M.M. & Treacy, M.M.J. (1990). On the imaging of Pt atoms in zeolite frameworks. Ultramicroscopy 34, 108118.CrossRefGoogle Scholar
Ritchie, R.H. & Howie, A. (1977). Electron excitation and the optical potential in electron microscopy. Philos Mag A 36, 463481.CrossRefGoogle Scholar
Robb, P.D. & Craven, A.J. (2008). Column ratio mapping: A processing technique for atomic resolution high angle annular dark field (HAADF) images. Ultramicroscopy 109, 6169.CrossRefGoogle ScholarPubMed
Treacy, M.M.J. (1982). Optimising atomic number contrast in annular dark field images of thin films in the scanning transmission electron microscope. J Microsc Spectrosc Electron 7, 511523.Google Scholar
Treacy, M.M.J. (1999). Deactivation of Pt/KL reforming catalysts by Pt agglomeration and entombment. J Micropor Mesopor Mater 28, 271292.CrossRefGoogle Scholar
Treacy, M.M.J. & Gibson, J.M. (1982). On the detection of point-defects in crystals using high-angle diffuse-scattering in the STEM. In J Inst Phys Conf Ser No. 61, Goringe, M.J. (Ed.), pp. 263266. London: The Institute of Physics.Google Scholar
Treacy, M.M.J. & Gibson, J.M. (1993). Coherence and multiple scattering in “Z”-contrast images. Ultramicroscopy 52, 3153.CrossRefGoogle Scholar
Treacy, M.M.J. & Gibson, J.M. (1996). Variable coherence microscopy: A rich source of structural information from disordered materials. Acta Crystallogr A 52, 212220.CrossRefGoogle Scholar
Treacy, M.M.J., Gibson, J.M., Short, K.T. & Rice, S.B. (1988). Channeling effects from impurity atoms in the high angle annular detector of the STEM. Ultramicroscopy 26, 133142.CrossRefGoogle Scholar
Treacy, M.M.J., Howie, A. & Pennycook, S.J. (1980). Contrast effects in the transmission electron-microscopy of supported crystalline catalyst particles. In J Inst Phys Conf Ser No. 52, Mulvey, T. (Ed.), pp. 261265. London: The Institute of Physics.Google Scholar
Treacy, M.M.J., Howie, A. & Wilson, C.J. (1978). Z contrast of platinum and palladium catalysts. Philos Mag A 38, 569585.CrossRefGoogle Scholar
Treacy, M.M.J. & Rice, S.B. (1989). Catalyst particle sizes from Rutherford scattered intensities. J Microsc 156, 211234.CrossRefGoogle Scholar
Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P. & Allen, L.J. (2004). Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92, 95502.CrossRefGoogle ScholarPubMed
Voyles, P.M., Grazul, J.L. & Muller, D.A. (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251273.CrossRefGoogle ScholarPubMed
Wall, J.S. & Hainfeld, J.F. (1986). Mass mapping with the scanning-transmission electron-microscope. Ann Rev Biophys Biophys Chem 15, 355376.CrossRefGoogle ScholarPubMed