Published online by Cambridge University Press: 02 July 2020
Conventional quantitative X-ray microanalysis in the scanning electron microscope or in the electron microprobe is valid for specimens of bulk homogeneous composition and with flat and polished surfaces. Quantitative methods, using X-ray microanalysis and Monte Carlo simulations of electron trajectories in solids, have been developed for the chemical analysis of spherical inclusions embedded in a matrix and for multilayered specimens. In this paper, the effect of porosity and of the size of the pores are investigated concerning their effect on X-ray emission using Monte Carlo simulation of electron trajectories in solids since porous materials are of great technological importance.
This new Monte Carlo program uses elastic Mott cross-sections to compute electron trajectories and the Joy & Luo modification of the continuous Bethe law of energy loss and the details are given elsewhere. This program assumes that all the pores are spherical and have the same size.