Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T06:50:34.507Z Has data issue: false hasContentIssue false

What's Going On with My CryoEM/CryoFIB-SEM Sample, and How Might I Improve It?

Published online by Cambridge University Press:  30 July 2020

Alex Noble
Affiliation:
New York Structural Biology Center, New York, New York, United States
Clint Potter
Affiliation:
New York Structural Biology Center, New York, New York, United States
Bridget Carragher
Affiliation:
New York Structural Biology Center, New York, New York, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Biological Sciences Tutorial: CryoEM Sample Preparation: Problems and Potential Solutions
Copyright
Copyright © Microscopy Society of America 2020

References

Carragher, B., et al. . (2019). Current outcomes when optimizing ‘standard’ sample preparation for single-particle cryo-EM. J. Microsc. 276, 3945.10.1111/jmi.12834CrossRefGoogle ScholarPubMed
Chen, J., Noble, A.J., et al. . (2019). Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO. J. Struct. Biol. X 1, 100005.Google ScholarPubMed
D'Imprima, E., et al. . (2019). Protein denaturation at the air-water interface and how to prevent it. ELife 8, e42747.10.7554/eLife.42747CrossRefGoogle Scholar
Glaeser, R.M. (2017). Proteins, Interfaces, and Cryo-EM Grids. Curr. Opin. Colloid Interface Sci.Google ScholarPubMed
Han, Y., et al. . (2020). High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proc. Natl. Acad. Sci. 117, 10091014.10.1073/pnas.1919114117CrossRefGoogle ScholarPubMed
Lyumkis, D. (2019). Challenges and Opportunities in Cryo-EM Single-Particle Analysis. J. Biol. Chem. jbc.REV118.005602.10.1074/jbc.REV118.005602CrossRefGoogle ScholarPubMed
Noble, A.J., et al. . (2018a). Routine single particle CryoEM sample and grid characterization by tomography. ELife 7, e34257.10.7554/eLife.34257CrossRefGoogle Scholar
Noble, A.J., Wei, H., Dandey, V.P., et al. . (2018b). Reducing effects of particle adsorption to the air–water interface in cryo-EM. Nat. Methods 15, 793795.10.1038/s41592-018-0139-3CrossRefGoogle Scholar
Snijder, J., et al. . (2017). Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids. J. Struct. Biol. 198, 3842.10.1016/j.jsb.2017.02.008CrossRefGoogle ScholarPubMed
Tan, Y.Z., et al. . (2017). Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793796.10.1038/nmeth.4347CrossRefGoogle ScholarPubMed
Villa, E., et al. . (2013). Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr. Opin. Struct. Biol. 23, 771777.10.1016/j.sbi.2013.08.006CrossRefGoogle ScholarPubMed