Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T05:47:09.923Z Has data issue: false hasContentIssue false

What Remains to Be Done to Allow Quantitative X-Ray Microanalysis Performed with EDS to Become a True Characterization Technique?

Published online by Cambridge University Press:  25 October 2012

Raynald Gauvin*
Affiliation:
Department of Materials Engineering, McGill University, M.H. Wong Building, 3610 University Street, Montréal, Québec H3A 2B2, Canada
*
Get access

Abstract

This article reviews different methods used to perform quantitative X-ray microanalysis in the electron microscope and also demonstrates the urgency of measuring the fundamental parameters of X-ray generation for the development of accurate standardless quantitative methods. Using ratios of characteristic lines acquired on the same X-ray spectrum, it is shown that the Cliff and Lorimer KA-B factor can be used in a general correction method that is appropriate for all types of specimens and electron microscopes, providing that appropriate corrections are made for X-ray absorption, fluorescence, and indirect generation. Since the fundamental parameters appear in the KA-B factor, only the ratio of the ionization cross sections needs to be known, not their absolute values. In this regard, the measurement of ratios of the KA-B factor (or intensities at different beam energies of the same material with no change of beam spreading in the material) permits the validation for the best models to compute the ratio of ionization cross sections. It is shown, using this method, that the nonrelativistic Bethe equation, to compute ionization cross section, is very close to the equation of E. Casnati et al. (J Phys B15, 155–167, 1982) and also to the equations proposed by D. Bote and F. Salvat (Phys Rev A77, 042701, 2008) for the computation of the ratio of ionization cross sections. The method is extended to show that it could be used to determine the values of the Coster-Kronig transitions factors, an important fundamental parameter for the generation of L and M lines that is mostly known with poor accuracy. The detector efficiency can be measured with specimens where their intensities were measured with an energy dispersive spectrometer detector, the efficiency of which has been measured in an X-ray synchrotron (M. Alvisi et al., Microsc Microanal12, 406–415, 2006). The spatial resolution should always be computed when performing quantitative X-ray microanalysis and the equations of R. Gauvin (Microsc Microanal13(5), 354–357, 2007) for bulk materials and the one presented in this article for thin films should be used. The effects of X-rays generated by fast secondary electrons and by Auger electrons are reviewed, and their effect can be detrimental for the spatial resolution of materials involving low-energy X-ray lines, in certain specific conditions. Finally, quantitative X-ray microanalysis of heterogeneous materials is briefly reviewed.

Type
Review Article
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvisi, M., Blome, M., Griepentrog, M., Hodoroaba, V.-D., Karduck, P., Mostert, M., Nacucchi, M., Procop, M., Rohde, M., Scholze, F., Statham, P., Terborg, R. & Thiot, J.-F. (2006). The determination of the efficiency of energy dispersive X-ray spectrometers by a new reference material. Microsc Microanal 12, 406415.Google Scholar
An, Z., Li, T.H., Wang, L.M., Xia, X.Y. & Luo, Z.M. (1996). Correction of substrate effect in the measurement of 8–25-keV electron-impact K-shell ionization cross sections of Cu and Co elements. Phys Rev A 54(4), 30673069.Google Scholar
Anderson, I.A., Bentley, J. & Carter, C.B. (1995). The secondary fluorescence correction for X-ray microanalysis in the analytical electron microscope. J Microsc 178(3), 226239.Google Scholar
Bastin, G.F., Dijkstra, J.M. & Heijligers, H.J.M. (1998). PROZA96: An improved matrix correction program for electron probe microanalysis, based on a double gaussian ϕ(ρz) approach. X-Ray Spectrom 27(1), 310.Google Scholar
Bote, D. & Salvat, F. (2008). Calculations of inner-shell ionization by electron impact with the distorted-wave and plane-wave Born approximations. Phys Rev A 77, 042701. Google Scholar
Bote, D., Salvat, F., Jablonski, F. & Powell, C.J. (2009). Cross sections for ionization of K, L and M shells of atoms by impact of electrons and positrons with energies up to 1 GeV: Analytical formulas. At Data Nucl Data Tables 95, 871909.Google Scholar
Campbell, J.L. (2003). Fluorescence yields and Coster-Kronig probabilities for the atomic L subshells. At Data Nucl Data Tables 85, 291315.Google Scholar
Casnati, E., Tartari, A. & Baraldi, C. (1982). An empirical approach to K-shell ionization cross section by electron. J Phys B 15, 155167.CrossRefGoogle Scholar
Castaing, R. (1951). Application of electron probes to local chemical and crystallographic analysis. PhD Thesis. Université de Paris.Google Scholar
Cliff, G. & Lorimer, G.W. (1975). The quantitative analysis of thin specimen. J Microsc-Oxford 103, 203207.Google Scholar
Colliex, C. & Jouffrey, B. (1972). Inelastic-scattering of electrons in a solid by excitation of deep atomic levels, Part 1, Energy-loss spectra. Philos Mag 25(2), 491498.Google Scholar
Davis, D.V., Mistry, V.D. & Quarles, C.A. (1972). Inner shell ionization of copper, silver and gold by electron bombardment. Phys Lett A 38(3), 169170.Google Scholar
Duncumb, P. (1957). Microanalysis with a scanning X-ray microscope. In X-ray Microscopy and Microradiography, Cosslet, V.E., Engstrom, A. & Pattee, H.H. (Eds.), p. 617. New York: Academic Press.Google Scholar
Egerton, R.F. (1975). Inelastic-scattering of 80 keV electrons in amorphous carbon. Philos Mag 31(1), 199215.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. New York: Springer.Google Scholar
Fischer, B. & Hoffmann, K.-W. (1967). Die Intensität der Bremsstrahlung und der charakteristischenK-Röntgenstrahlung dünner Anoden. Z Physik 204(2), 122128.Google Scholar
Fitzgerald, R., Kiel, K. & Heinrich, K. (1968). Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis. Science 159, 528.Google Scholar
Gauvin, R. (1990). Analyse chimique quantitative en microscopie électronique. PhD Thesis. Montréal, Canada: École Polytechnique de Montréal.Google Scholar
Gauvin, R. (1993). A parameterization of K-shell ionization cross section by electrons with an empirical modified Bethe's formula. Microbeam Anal 2, 253258.Google Scholar
Gauvin, R. (2007a). A universal equation for the emission range of X rays from bulk specimens. Microsc Microanal 13(5), 354357.Google Scholar
Gauvin, R. (2007b). The effect of auger electrons on X-ray microanalysis in the transmission electron microscope. Microsc Microanal 13(S2), 13841385.Google Scholar
Gauvin, R. (2008). The spatial resolution of X-ray microanalysis with EDS in the transmission electron microscope. Microsc Microanal 14(2), 11621163.Google Scholar
Gauvin, R., Drouin, D. & Hovington, P. (1999). The effect of FSE on X-ray microanalysis in the SEM. Scanning 21, 238245.Google Scholar
Gauvin, R. & L'Espérance, G. (1991). A new method for the determination of the C nl parameter of the Bethe formula of ionization cross-sections based on the ratio of K factors obtained at different accelerating voltages. J Microsc 163(3), 295306.Google Scholar
Gauvin, R. & L'Espérance, G. (1992). A Monte Carlo code to simulate the effect of fast secondary electrons on K factors and spatial resolution in the TEM. J Microsc 168(2), 153167.Google Scholar
Gauvin, R., L'Espérance, G. & St-Laurent, S. (1992). Quantitative X-ray microanalysis of spherical inclusions embedded in a matrix using a SEM and Monte Carlo simulations. Scanning 14, 3748.Google Scholar
Gauvin, R., Lifshin, E., Demers, H., Horny, P. & Campbell, H. (2006). Win X-ray, a new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Microsc Microanal 12, 4964.Google Scholar
Goldstein, J.I., Costley, J.L., Lorimer, G.W. & Reed, S.J.B. (1977). Quantitative X-ray analysis in the electron microscope. Scan Electron Micros 1, 315324.Google Scholar
Goldstein, J.I., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L.C. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. New York: Plenum Press.Google Scholar
He, F.Q., Peng, X.F., Long, X.G., Luo, Z.M. & An, Z. (1997). K-shell ionization cross sections by electron bombardment at low energies. Nucl Instrum Methods B 129(4), 445450.Google Scholar
Henoc, J. (1968). Quantitative electron probe microanalysis. NBS Special Publication 298. Washington, DC: National Bureau of Standards, U.S. Department of Commerce. Google Scholar
Hink, W. & Pashke, H. (1971a). K-shell-fluorescence yield for carbon and other light elements. Phys Rev A 4, 507511.Google Scholar
Hink, W. & Pashke, H. (1971b). Der Wirkungsquerschnitt für die Ionisierung derK-Schale von Kohlenstoff durch Elektronenstoß (2–30 keV). Z Phys 244(2), 140148.Google Scholar
Horny, P., Lifshin, E., Campbell, H. & Gauvin, R. (2010). Development of a new quantitative X-ray microanalysis method for electron microscopy. Microsc Microanal 16(6), 821830.CrossRefGoogle ScholarPubMed
Hubbell, J.H. (1999). Compilation of photon cross-sections: Some historical remarks and current status. X-ray Spectrom 28, 215223.Google Scholar
Hubner, H., Ilgen, K. & Hoffman, K.-W. (1972). Messung des Wirkungsquerschnitts für Ionisierung in derK-Schale durch Elektronenstoß. Z Phys 255(3), 269280.Google Scholar
Isaacson, M. (1972). Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine, and uracil. II. Inner shell excitation and inelastic scattering cross sections. J Chem Phys 56(5), 18131818.Google Scholar
Joy, D.C. (2001). Fundamental constants for quantitative X-ray microanalysis. Microsc Microanal 7, 159167.CrossRefGoogle ScholarPubMed
Joy, D.C., Newbury, D.E. & Myklebust, R.L. (1982). The role of fast secondary electrons in degrading spatial resolution in the analytical electron microscope. J Microsc-Oxford 128, RP1RP2.Google Scholar
Kyser, D.F. & Murata, K. (1974). Qualitative electron microprobe analysis of thin films on substrate. IBM J Res Develop 18, 352363.Google Scholar
Llovet, X. & Merlet, C. (2010). Electron probe microanalysis of thin films and multilayers using the computer program XFILM. Microsc Microanal 16(1), 2132.Google Scholar
Llovet, X., Merlet, C. & Salvat, F. (2000). Measurements of K-shell ionization cross-sections of Cr, Ni and Cu by impact of 6.5–40 keV electrons. J Phys B 33(8), 37613772.Google Scholar
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen thickness measurement in the TEM. J Electron Microsc Techniq 8, 193200.Google Scholar
Merlet, C. (1994). An accurate computer correction program for quantitative electron probe microanalysis. Mikrochim Acta 114, 363376.Google Scholar
Merlet, C., Llovet, X. & Salvat, F. (2004). Measurements of absolute K-shell ionization cross sections and L-shell X-ray production cross sections of Ge by electron impact. Phys Rev A 69(3), 032708. Google Scholar
Merlet, C., Llovet, X. & Salvat, F. (2008). Near-threshold absolute M-shell X-ray production cross sections of Au and Bi by electron impact. Phys Rev A 78(2), 022704. Google Scholar
Michaud, P. & Gauvin, R. (2009). MC X-Ray, a new Monte Carlo program for quantitative X-ray microanalysis of real materials. Microsc Microanal 15(S2), 488489.Google Scholar
Newbury, D.E., Swyt, C.R. & Myklebust, R.L. (1995). Standardless quantitative electron probe microanalysis with energy dispersive X-ray spectrometry. Is it worth the risk? Anal Chem 67(11), 18661871.Google Scholar
Nockolds, C., Cliff, G. & Lorimer, G.W. (1980). Characteristic X-ray fluorescence correction in thin film analysis. Micron 11(3-4), 325326.Google Scholar
Pia, M.G., Saracco, P. & Sudhakar, M. (2009). Validation of K and L shell radiative transition probability calculations. IEEE Trans Nucl Sci 56(6), 36503661.Google Scholar
Pouchou, J.-L. (1993). X-ray microanalysis of stratified specimens. Anal Chim Acta 283, 8197.Google Scholar
Pouchou, J.-L. & Pichoir, F. (1984). A new model for quantitative X-ray microanalysis 1. Application to the analysis of homogeneous samples. Recherche Aérospatiale 3, 167192.Google Scholar
Powell, C.J. (1976). Cross sections for ionization of inner-shell electrons by electrons. Rev Mod Phys 48, 3347.Google Scholar
Reed, S.B.J. (1965). Characteristic fluorescence correction in electron-probe microanalysis, Brit J Appl Phys 16, 913926.Google Scholar
Romig, A.D., Michael, J.R. & Goldstein, J.I. (1991). X-ray spatial resolution at intermediate voltages: An assessment by massively parallel Monte Carlo electron trajectories simulations. In Microbeam Analysis, Howitt, D.G. (Ed.), pp. 119126. San Francisco, CA: San Francisco Press.Google Scholar
Rossouw, C.J. & Whelan, M.J. (1979). The K-shell cross-section for 80 kV electrons in single-crystal graphite and AlN. J Phys D 12, 797807.Google Scholar
Schreiber, T.P. & Wims, A.M. (1981). A quantitative X-ray microanalysis method using K, L and M lines. Ultramicroscopy 6, 323334.Google Scholar
Shima, K. (1980). Mn and Cu K-shell ionization cross sections by slow electron impact. Phys Lett A 77(4), 237239.Google Scholar
Shima, K., Nakagawa, T., Umetani, K. & Fikumo, T. (1981). Threshold behavior of Cu-, Ge-, Ag-K-, and Au-L 3-shell ionization cross sections by electron impact. Phys Rev A 24(1), 7278.Google Scholar
Tawara, H., Harison, K.G. & De Heer, F.J. (1973). X-ray emission cross sections and fluorescence yields for light atoms and molecules by electron impact. Physica 63(2), 351367.Google Scholar
Watanabe, M. & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new ζ-factor methods. J Microsc 221(2), 89109.Google Scholar
Westbrook, G.L. & Quarles, C.A. (1987). Total cross sections for ionization of the K-shell by electron bombardment. Nucl Instrum Meth B 24–25(1), 196198.Google Scholar
Wood, J.E., Williams, D.B. & Goldstein, J.I. (1984). Experimental and theoretical determination of K A-Fe factors for quantitative X-ray microanalysis in the analytical electron microscope. J Microsc 133, 255274.Google Scholar
Zaluzec, N.J. (1984). K and L shell cross sections for X-ray microanalysis in an AEM. In Analytical Electron Microscopy, Geiss, R.H. (Ed.), pp. 279284. San Francisco, CA: San Francisco Press.Google Scholar