Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T12:53:52.165Z Has data issue: false hasContentIssue false

What Do You Get If You Cross a Phase Object Approximation with a Dynamically Scattering Sample?

Published online by Cambridge University Press:  30 July 2020

L Clark
Affiliation:
University of Oxford, Oxford, England, United Kingdom
Colum O'Leary
Affiliation:
University of Oxford, Oxford, England, United Kingdom
GT Martinez
Affiliation:
University of Oxford, Oxford, England, United Kingdom
TC Petersen
Affiliation:
Monash University, Melbourne, Victoria, Australia
Scott Findlay
Affiliation:
Monash University, Clayton, Victoria, Australia
Peter Nellist
Affiliation:
University of Oxford, Oxford, England, United Kingdom

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM): New Experiments and Data Analyses for Determining Materials Functionality and Biological Structures
Copyright
Copyright © Microscopy Society of America 2020

References

Pennycook, Timothy J., et al. “High dose efficiency atomic resolution imaging via electron ptychography.” Ultramicroscopy 196 (2019): 131135.10.1016/j.ultramic.2018.10.005CrossRefGoogle ScholarPubMed
O'Leary, Colum M., et al. “Contrast Transfer and Noise Minimization in Electron Ptychography.” Microscopy and Microanalysis 25.S2 (2019): 6465.10.1017/S1431927619001053CrossRefGoogle Scholar
Lozano, Juan G., et al. “Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography.” Nano letters 18.11 (2018): 68506855.10.1021/acs.nanolett.8b02718CrossRefGoogle ScholarPubMed
Clark, L., et al. “Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy.” Physical Review A 97.4 (2018): 043843.10.1103/PhysRevA.97.043843CrossRefGoogle Scholar
Kirkland, Earl J. Advanced computing in electron microscopy. Springer Science & Business Media, 2010.10.1007/978-1-4419-6533-2CrossRefGoogle Scholar
Aveyard, Richard, et al. “Modeling nanoscale inhomogeneities for quantitative HAADF STEM imaging.” Physical review letters 113.7 (2014): 075501.10.1103/PhysRevLett.113.075501CrossRefGoogle ScholarPubMed
Mawson, T., et al. “Suppressing dynamical diffraction artefacts in differential phase contrast scanning transmission electron microscopy of long-range electromagnetic fields via precession.” arXiv preprint arXiv:2002.01595 (2020).Google ScholarPubMed
Pennycook, Timothy J., et al. “Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution.” Ultramicroscopy 151 (2015): 160–167Google ScholarPubMed
Acknowledgements: The authors acknowledge funding from ESTEEM3 under the Horizon2020 programme. SDF acknowledges support from the Australian Research Council Discovery Projects funding scheme (Project DP160102338).Google Scholar