Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T20:46:39.222Z Has data issue: false hasContentIssue false

Water Exclusion Layers Probed by Depth Scan Confocal Raman Microscopy

Published online by Cambridge University Press:  27 June 2013

Omar Teschke*
Affiliation:
Laboratório de Nanoestruturas e Interfaces, Instituto de Física, UNICAMP, 13083-859 Campinas, SP, Brazil
Luiz O. Bonugli
Affiliation:
Laboratório de Nanoestruturas e Interfaces, Instituto de Física, UNICAMP, 13083-859 Campinas, SP, Brazil
Marcus V.P. dos Santos
Affiliation:
Laboratório de Nanoestruturas e Interfaces, Instituto de Física, UNICAMP, 13083-859 Campinas, SP, Brazil
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Depth scan confocal Raman microscopy was employed to map water and air spatial distributions in immersed superhydrophobic films. Due to the lack of visible nanobubbles on flat surfaces, we have probed heterogeneous surfaces where solid–liquid, liquid–vapor, and vapor–solid coexist. Depth scan profiles show liquid exclusion (vapor) layers inside the fiber arrangement and water in contact only at the fiber apex.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, P. (2009). Material witness: Natural waterproofing. Nat Mater 8, 250.CrossRefGoogle ScholarPubMed
Batchelder, D.N., Cheng, C. & Pitt, G.D. (1991). Molecular imaging by Raman microscopy. Adv Mater 3, 566568.CrossRefGoogle Scholar
Blossey, R. (2003). Self-cleaning surfaces—virtual realities. Nat Mater 2, 301306.CrossRefGoogle ScholarPubMed
Bobji, M.S., Kumar, S.V., Asthana, A. & Govardhan, R.N. (2009). Underwater sustainability of the “Cassie” state of wetting. Langmuir 25, 1212012126.CrossRefGoogle ScholarPubMed
Bonugli, L.O., Puydinger dos Santos, M.V., de Souza, E.F. & Teschke, O. (2012). Superhydrophobic polyethylcyanoacrylate coatings. Contact area with water measured by Raman spectral images, contact angle and Cassie-Baxter model. J Coll Inter Sci 388, 306309.CrossRefGoogle ScholarPubMed
Brandner, B.D., Hansson, P.M., Swerin, A., Claesson, P.M., Wahlander, M., Schoelkopf, J. & Gane, P.A.C. (2011). Solvent segregation and capillary evaporation at a superhydrophobic surface investigated by confocal Raman microscopy and force measurements. Soft Matter 7, 10451052.CrossRefGoogle Scholar
Everall, N.J. (2000). Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl Spectrosc 54, 773782.CrossRefGoogle Scholar
Gong, X., Li, J., Lu, H., Wan, R., Li, J., Hu, J. & Fang, H. (2007). A charge-driven molecular water pump. Nat Nanotechnol 2, 709712.CrossRefGoogle ScholarPubMed
Hosono, E., Fujihara, S., Honma, I. & Zhou, H.S. (2005). Superhydrophobic perpendicular nanopin film by the bottom-up process. J Am Chem Soc 127, 1345813459.CrossRefGoogle ScholarPubMed
Kiraly, Z., Veisz, B., Mastalir, A. & Kofarago, G. (2001). Preparation of ultrafine palladium particles on cationic and anionic clays, mediated by oppositely charged surfactants: Catalytic probes in hydrogenations. Langmuir 17, 53815387.CrossRefGoogle Scholar
Larmour, I.A., Bell, S.E.J. & Saunders, G.C. (2007). Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew Chem 119, 17401742.CrossRefGoogle Scholar
Luo, C., Zheng, H., Wang, L., Fang, H., Hu, J., Fan, C., Cao, Y. & Wang, J. (2010). Direct three-dimensional imaging of the buried interfaces between water and superhydrophobic surfaces. Angew Chem Int Ed 49, 91459148.CrossRefGoogle ScholarPubMed
Luo, C., Zuo, X., Wang, L., Wang, E., Song, S., Wang, J., Wang, J., Fan, C. & Cao, Y. (2008). Flexible carbon nanotube-polymer composite films with high conductivity and superhydrophobicity made by solution process. Nano Lett 8, 44544458.CrossRefGoogle ScholarPubMed
Nosonovsky, M. & Bhushan, B. (2007). Biomimetic superhydrophobic surfaces: Multiscale approach. Nano Lett 7, 26332637.CrossRefGoogle ScholarPubMed
Puppels, G.J., Colier, W., Olminkhof, J.H.F., Otto, C., Mul, F.F.M. & Greve, J. (1991). Description and performance of a highly sensitive confocal Raman microspectrometer. J Raman Spectrosc 22, 217225.CrossRefGoogle Scholar
Sammon, C., Hajatdoost, S., Eaton, P., Mura, C. & Yarwood, J. (1999). Materials analysis using confocal Raman microscopy. Macromol Symp 141, 247262.CrossRefGoogle Scholar
Singh, S., Houston, J., van Swol, F. & Brinker, C.J. (2006). Superhydrophobicity: Drying transition of confined water. Nature 442, 526.CrossRefGoogle ScholarPubMed
Srinivasan, S., Praveen, V.K., Philip, R. & Ajayaghosh, A. (2008). Bioinspired superhydrophobic coatings of carbon nanotubes and linear systems based on the “bottom-up” self-assembly approach. Angew Chem 120, 58345838.CrossRefGoogle Scholar
Teschke, O., Dienes, A. & Whinnery, J.R. (1976). Theory and operation of high-power CW and long-pulse dye lasers. IEEE J Quantum Electronics 12, 383387.CrossRefGoogle Scholar
Treado, P.J. & Morris, M.D. (1994). Infrared and Raman spectroscopic imaging. Appl Spectrosc Rev 29, 138.CrossRefGoogle Scholar
Yaminsky, V.V., Yushchenko, V.S., Amelina, E.A. & Shchukin, E.D. (1983). Cavity formation due to a contact between particles in a nonwetting liquid. J Coll Inter Sci 96, 301306.CrossRefGoogle Scholar
Supplementary material: Image

Teschke Supplementary Material

Appendix

Download Teschke Supplementary Material(Image)
Image 422.6 KB