Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T08:22:05.706Z Has data issue: false hasContentIssue false

Use of Ferroelectric Single-crystal Bimorphs for Precise Positioning in Scanning Probe Microscope

Published online by Cambridge University Press:  30 July 2020

Ilya Kubasov
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Aleksandr Kislyuk
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Andrei Turutin
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Aleksandr Temirov
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Sergey Ksenich
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Mikhail Malinkovich
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia
Yuriy Parkhomenko
Affiliation:
National University of Science and Technology MISiS, Moscow, Moskva, Russia

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Surface and Subsurface Microscopy and Microanalysis of Physical and Biological Specimens - Complimentary Microwave Interrogation in Surface Analysis
Copyright
Copyright © Microscopy Society of America 2020

References

Croft, D., Shed, G., Creep, Devasia S., Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application // J. Dyn. Syst. Meas. Control. – 2001. – Vol. 123. – № 1. – P. 3543. DOI: https://doi.org/10.1115/1.1341197.CrossRefGoogle Scholar
Kubasov, I. V., Kislyuk, A.M., Turutin, A. V., et al. Low-Frequency Vibration Sensor with a Sub-nm Sensitivity Using a Bidomain Lithium Niobate Crystal // Sensors. – 2019. – Vol. 19. – № 3. – P. 614. DOI: https://doi.org/10.3390/s19030614.CrossRefGoogle ScholarPubMed
Kim, S., Gopalan, V., Gruverman, A. Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate // Appl. Phys. Lett. – 2002. – Vol. 80. – № 15. – P. 27402742. DOI: https://doi.org/10.1063/1.1470247.CrossRefGoogle Scholar
Blagov, A.E., Bykov, A.S., Kubasov, I.V., et al. An electromechanical x-ray optical element based on a hysteresis-free monolithic bimorph crystal // Instruments Exp. Tech. – 2016. – Vol. 59. – № 5. DOI: https://doi.org/10.1134/S0020441216050043.CrossRefGoogle Scholar
Kubasov, I. V., Popov, A. V., Bykov, A.S., et al. Deformation Anisotropy of Y + 128°-Cut Single Crystalline Bidomain Wafers of Lithium Niobate // Russ. Microelectron. – 2017. – Vol. 46. – № 8. – P. 557563. DOI: https://doi.org/10.1134/S1063739717080108.CrossRefGoogle Scholar
Turutin, A. V., Vidal, J. V., Kubasov, I. V., et al. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork // J. Magn. Magn. Mater. – 2019. – Vol. 486. – P. 165209. DOI: https://doi.org/10.1016/j.jmmm.2019.04.061.CrossRefGoogle Scholar
Kubasov, I.V., Kislyuk, A.., Malinkovich, M., et al. Vibrational Power Harvester Based on Lithium Niobate Bidomain Plate // Acta Phys. Pol. A. – 2018. – Vol. 134. – № 1. – P. 9092. DOI: https://doi.org/10.12693/APhysPolA.134.90.CrossRefGoogle Scholar
Vidal, J. V., Turutin, A. V., Kubasov, I. V., et al. Low-Frequency Vibration Energy Harvesting With Bidomain LiNbO3 Single Crystals // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. – 2019. – Vol. 66. – № 9. – P. 14801487. DOI: https://doi.org/10.1109/TUFFC.2019.2908396.CrossRefGoogle ScholarPubMed