Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T16:31:02.110Z Has data issue: false hasContentIssue false

Understanding of Capping Effects on the Tip Shape Evolution and on the Atom Probe Data of Bulk LaAlO3 Using Transmission Electron Microscopy

Published online by Cambridge University Press:  20 February 2017

Chang-Min Kwak
Affiliation:
Department of Materials Science and Engineering, POSTECH, Pohang 790-784, South Korea
Young-Tae Kim
Affiliation:
Department of Materials Science and Engineering, POSTECH, Pohang 790-784, South Korea
Chan-Gyung Park
Affiliation:
Department of Materials Science and Engineering, POSTECH, Pohang 790-784, South Korea National Institute for Nanomaterials Technology (NINT), POSTECH, Pohang 790-784, South Korea
Jae-Bok Seol*
Affiliation:
National Institute for Nanomaterials Technology (NINT), POSTECH, Pohang 790-784, South Korea
*
*Corresponding author. [email protected]
Get access

Abstract

Two challenges exist in laser-assisted atom probe tomography (APT). First, a drastic decline in mass-resolving power is caused, not only by laser-induced thermal effects on the APT tips of bulk oxide materials, but also the associated asymmetric evaporation behavior; second, the field evaporation mechanisms of bulk oxide tips under laser illumination are still unclear due to the complex relations between laser pulse and oxide materials. In this study, both phenomena were investigated by depositing Ni- and Co-capping layers onto the bulk LaAlO3 tips, and using stepwise APT analysis with transmission electron microscopy (TEM) observation of the tip shapes. By employing the metallic capping, the heating at the surface of the oxide tips during APT analysis became more symmetrical, thereby enabling a high mass-resolving power in the mass spectrum. In addition, the stepwise microscopy technique visualized tip shape evolution during APT analysis, thereby accounting for evaporation sequences at the tip surface. The combination of “capping” and “stepwise APT with TEM,” is applicable to any nonconductors; it provides a direct observation of tip shape evolution, allows determination of the field evaporation strength of oxides, and facilitates understanding of the effects of ultrafast laser illumination on an oxide tip.

Type
New Approaches and Correlative Microscopy
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blavette, D., Cadel, E., Fraczkiewicz, A. & Menand, A. (1999). Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 17, 23172319.CrossRefGoogle Scholar
Choi, Y.T., Shin, Y.M., Lim, S.C., Bae, D.J., Lee, H.Y. & Lee, B.S. (2000). Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. J Appl Phys 88, 4898.CrossRefGoogle Scholar
Devaraj, A., Colby, R., Hess, W.P., Perea, D.E. & Thevuthasan, S. (2013). Role of photoexcitation and field ionization in the measurement of accurate oxide stoichiometry by laser-assisted atom probe tomography. J Phys Chem Lett 4, 993998.CrossRefGoogle ScholarPubMed
Diercks, D.R., Gorman, B.P., Kirchhofer, R., Sanfor, N., Bertness, K. & Brubaker, M. (2013). Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects. J Appl Phys 114, 184903.CrossRefGoogle Scholar
Fasth, J.E., Loberg, B. & Norden, H. (1967). Preparation of contamination-free tungsten specimens for the field-ion microscope. J Sci Instrum 44, 1044.CrossRefGoogle Scholar
Foley, E.L. & Sawyer, R.B. (1964). Thermal diffusivity of nickel from 25° to 500°C. J Appl Phys 35, 3053.CrossRefGoogle Scholar
Gault, B., De Geuser, F., Stephenson, L.T., Moody, M.P., Muddle, B.C. & Ringer, S.P. (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14, 296305.CrossRefGoogle Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Micros Microanal 13, 437447.CrossRefGoogle ScholarPubMed
Guo, W., Jagle, E.A., Choi, P.P., Yao, J., Kostka, A., Schneider, J.M. & Raabe, D (2014). Shear-induced mixing governs code formation of crystalline-amorphous nano laminates. Phys Rev Lett 113, 069903.CrossRefGoogle Scholar
Haley, D., Petersen, T., Ringer, S.P. & Smith, G.D.W. (2011). Atom probe trajectory mapping using experimental tip shape measurements. J Microsc 244, 170180.CrossRefGoogle ScholarPubMed
Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. (2011). Three-dimensional thermal response of a metal subwavelength tip under femtosecond laser illumination. Phys Rev B 84, 033405.CrossRefGoogle Scholar
Karahka, M., XIA, Y. & Kreuzer, H.J. (2015). The mystery of missing species in atom probe tomography of composite materials. Appl Phys Lett 107, 062105.CrossRefGoogle Scholar
Kelly, T.F. & Larson, D.J. (2012). The second revolution in atom probe tomography. MRS Bull. 37(2), 150158.CrossRefGoogle Scholar
Kelly, T.F., Vella, A., Bunton, J.H., Houard, J., Silaeva, E.P., Bogdanowicz, J. & Vandervorst, W. (2014). Laser pulsing of field evaporation in atom probe tomography. Curr Opin Solid State Mater Sci 18, 8189.CrossRefGoogle Scholar
Kim, Y.T., Seol, J.B. & Park, C.G. (2016). Influence of laser-pulse energy on field evaporation of LaAlO3 in atom probe tomography analysis. Microsc Microanal 22, 16041605.CrossRefGoogle Scholar
Knipling, K.E., Dunand, D.C. & Seidman, D.N. (2007). Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys. Microsc Microanal 13, 503516.CrossRefGoogle ScholarPubMed
Kodzuka, M., Ohkubo, T. & Hono, K. (2011). Laser assisted atom probe analysis of thin film on insulating substrate. Ultramicroscopy 111(6), 557561.CrossRefGoogle ScholarPubMed
Koelling, S., Innocenti, N., Schulze, A., Gilbert, M., Kambham, A.K. & Vandervorst, W. (2011). In-situ observation of non-hemispherical tip shape formation during laser-assisted atom probe tomography. J Appl Phys 109, 104909.CrossRefGoogle Scholar
Krakauer, B.W. & Seidman, D.N. (1992). Systematic procedures for atom-probe field-ion microscopy studies of grain-boundary segregation. Rev Sci Instrum 63, 40714079.CrossRefGoogle Scholar
Kwak, C.M., Seol, J.B., Kim, Y.T. & Park, C.G. (2016). Laser-assisted atom probe of interfaces in four paired poly-Si/SiO2 heterostructure with each thickness of 10 nm. Appl Surf Sci 396, 497503.CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Bunton, J.H., Olson, D.P., Lawrence, D.F., Oltman, E., Strennin, S.N. & Kelly, T.F. (2013). Improved mass resolving power and yield in atom probe tomography. Microsc Microanal 19, 994995.CrossRefGoogle Scholar
Lee, J.H., Lee, B.H., Kim, Y.T., Kim, J.J., Lee, S.Y., Lee, K.P. & Park, C.G. (2014). Study of vertical Si/SiO2 interface using laser-assisted atom probe tomography and transmission electron microscopy. Micron 58, 3237.CrossRefGoogle ScholarPubMed
Marquis, E., Yahya, N., Larson, D.J., Miller, M.K. & Todd, R.I. (2010). Probing the improbable: Imaging C atoms in alumina. Mater Today 13(10), 3436.CrossRefGoogle Scholar
Miller, M.K. (2006). Atom probe tomography characterization of solute segregation to dislocations. Microsc Res Tech 69, 359365.CrossRefGoogle ScholarPubMed
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.CrossRefGoogle ScholarPubMed
Montague, S.A., Draper, C.W. & Rosenblatt, G.M. (1979). Thermal diffusivities of hafnium and cobalt from 300 to 1000 K. J Phys Chem Solids 40, 987992.CrossRefGoogle Scholar
Muller, M., Smith, G.D.W., Gault, B. & Grovenor, C.R.M. (2012). Compositional non uniformities in pulsed laser atom probe tomography analysis of compound semiconductors. J Appl Phys 111, 064908.CrossRefGoogle Scholar
Schreiber, D.K., Olszta, M.J. & Bruemmer, S.M. (2013). Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni–Al binary alloy exposed to high-temperature water. Scr Mater 69, 509512.CrossRefGoogle Scholar
Sha, G., Cerezo, A. & Smith, G.D.W. (2008). Field evaporation behavior during irradiation with picosecond laser pulses. Appl Phys Lett 92, 043503.CrossRefGoogle Scholar
Shariq, A., Mutas, S., Wedderhoff, K., Klein, C., Hortenbach, H., Teichert, S., Kucher, P. & Gerstl, S.S.A. (2009). Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109, 472479.CrossRefGoogle ScholarPubMed
Silaeva, E.P., Arnoldi, L., Karahka, M.L., Deconihout, B., Menand, A., Kreuzer, H.J. & Vella, A. (2014). Do dielectric nanostructures turn metallic in high-electric dc field ? Nano Lett 14, 60666072.CrossRefGoogle Scholar
Silaeva, E.P., Karahka, M. & Kreuzer, H.J. (2013). Atom probe tomography and field evaporation of insulators and semiconductors: Theoretical issues. Curr Opin Solid State Mater Sci 17, 211216.CrossRefGoogle Scholar
Seol, J.B. & Kim, J.H. (2016). Grain boundary segregation and core/shell structured nanofeatures in oxide-dispersion strengthened Fe–Cr alloys. Microsc Microanal 22, 674675.CrossRefGoogle Scholar
Seol, J.B., Kwak, C.M., KIM, Y.T. & PARK, C.G. (2016). Understanding of the field evaporation of surface modified oxide materials through transmission electron microscopy and atom probe tomography. Appl Surf Sci 368, 368377.CrossRefGoogle Scholar
Seol, J.B., Raabe, D., Choi, P.P., Park, H.S., Kwak, J.H. & Park, C.G. (2013). Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scr Mater 68, 348353.CrossRefGoogle Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Vella, A., Mazumder, B., Costa, G.D. & Deconohout, B. (2011). Field evaporation mechanism of bulk oxides under ultra-fast laser illumination. J Appl Phys 110, 044321.CrossRefGoogle Scholar
Vurpillot, F., Gilbert, M., Vella, A. & Deconihout, B. (2007). Femtosecond laser atom probe tomography: Principles and applications. Microsc Microanal 13, 16061607.CrossRefGoogle Scholar
Yao, M.J., Dey, P., Seol, J.B., Choi, P., Herbig, M., Marceau, R.K.W., Hickel, T., Neugebauer, J. & Raabe, D. (2016). Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe–Mn–Al–C low density steel. Acta Mater 106, 229238.CrossRefGoogle Scholar
Yoon, K.E., Seidman, D.N., Antoine, C. & Bauer, P. (2008). Atomic-scale chemical analyses of niobium oxide/niobium interfaces via atom-probe tomography. Appl Phys Lett 93, 132502.CrossRefGoogle Scholar
Supplementary material: Image

Kwak supplementary material

Supplementary Figure

Download Kwak supplementary material(Image)
Image 2.1 MB