Article contents
Two-Photon Imaging of Microbial Immunity in Living Tissues
Published online by Cambridge University Press: 30 July 2012
Abstract
The immune system is highly evolved and can respond to infection throughout the body. Pathogen-specific immune cells are usually generated in secondary lymphoid tissues (e.g., spleen, lymph nodes) and then migrate to sites of infection where their functionality is shaped by the local milieu. Because immune cells are so heavily influenced by the infected tissue in which they reside, it is important that their interactions and dynamics be studied in vivo. Two-photon microscopy is a powerful approach to study host-immune interactions in living tissues, and recent technical advances in the field have enabled researchers to capture movies of immune cells and infectious agents operating in real time. These studies have shed light on pathogen entry and spread through intact tissues as well as the mechanisms by which innate and adaptive immune cells participate in thwarting infections. This review focuses on how two-photon microscopy can be used to study tissue-specific immune responses in vivo, and how this approach has advanced our understanding of host-immune interactions following infection.
- Type
- Special Section: Seventh Omaha Imaging Symposium
- Information
- Copyright
- Copyright © Microscopy Society of America 2012
References
Herz Supplementary Movie 1
Supplementary Movie 1. Dynamics of antiviral CD8 and CD4 T cells. A representative time lapse of a three-dimensional (3D) reconstruction shows CFP+ LCMV-specific CD8 T cells (green) and GFP+ LCMV-specific CD4 T cells in the splenic red (RP) and white (WP) pulp 7 days following an i.v. infection with LCMV. Z-stacks (50 mm in depth) were collected every 30 s. Collagen is shown in pink and autofluorescence in blue. The white hashed line denotes the border between the splenic RP and WP.
Herz Supplementary Movie 2
Supplementary Movie 2. Anatomy of brain myeloid cells in naïve versus LCMV-infected mice. A side-by-side comparison of brain macrophages and microglia (green) is shown for mock infected CX3CR1-GFP+/- mice (left) versus mice infected intracerebrally with LCMV (right). Each z-stack is 100 um in depth and was collected with a 2.5-um step interval. Skull bone is shown in blue.
Herz Supplementary Movie 3
Supplementary Movie 3. Dynamics of CNS myeloid cells following LCMV infection. Representative time lapses of 3D reconstructions show the dynamics of monocytes, macrophages, and microglia (green) in the brains of uninfected (left) and LCMV-DsRed (right) infected CX3CR1-GFP+/- mice. LCMV infection (right panel, red) increases monocytic surveillance of blood vessels and induces the generation of highly reactive microglia/macrophages. Note the aggregation of myeloid cells in areas of viral infection (white arrow). Blood vessels (red) in the left panel are shown in red. Skull bone in both panels is blue.
- 22
- Cited by